MVE165/MMG630, Applied Optimization Lecture 9 Minimum cost flow models and algorithms

Ann-Brith Strömberg

2012-04-19

Maximum flow models (Ch. 8.6)

- Consider a district heating network with pipelines that transports energy (in the form of hot water) from a number of sources to a number of destinations
- The network has several branches and junctions
- ▶ Pipe segment (i,j) has a maximum capacity of K_{ij} units of flow per time unit
- ► A pipe can be one- or bidirectional
- What is the maximum total amount of flow per time unit through this network?
- Another application of the maximum flow model: evacuation of buildings (also time dynamics)

LP model for maximum flow problems

- Let x_{ij} denote the amount of flow through pipe segment (i,j) (flow direction $i \rightarrow j$)
- ▶ Let v denote the total flow from the source to the destination
- ▶ Graph: G = (V, A, K) (nodes, directed arcs, arc capacities) (an undirected edge is here represented by two directed arcs)

max
$$v$$
,
s.t. $\sum_{j:(s,j)\in A} (-x_{sj}) + v = 0$,
 $\sum_{j:(j,t)\in A} x_{jt} - v = 0$,
 $\sum_{i:(i,k)\in A} x_{ik} + \sum_{j:(k,j)\in A} (-x_{kj}) = 0$, $k \in V \setminus \{s,t\}$
 $x_{ij} \leq K_{ij}$, $(i,j) \in A$
 $x_{ij} \geq 0$, $(i,j) \in A$

A solution method for maximum flow problems (Edmonds & Karp, 1972)

- 1. Let v := 0 and $x_{ij} := 0$. Arc capacities $u_{ij} := K_{ij}$, $(i,j) \in A$.
- 2. Find a maximum capacity path $P \subset A$ from s to t (modified shortest path algorithm). The capacity of P is $\hat{u} := \min \{ \min \{ u_{ij} \mid (i,j) \in P \}; \min \{ x_{ij} \mid (j,i) \in P \} \}.$ If $\hat{u} = 0$, go to step 4.
- 3. Update the flows $x_{ij} := \begin{cases} x_{ij} + \hat{u}, & \text{if } (i,j) \in P, \\ x_{ij} \hat{u}, & \text{if } (j,i) \in P, \\ x_{ij}, & \text{otherwise,} \end{cases}$ the capacities $u_{ij} := \begin{cases} u_{ij} \hat{u}, & \text{if } (i,j) \in P, \\ u_{ij} + \hat{u}, & \text{if } (j,i) \in P, \\ u_{ij}, & \text{otherwise,} \end{cases}$ and the total flow $v := v + \hat{u}$. Go to step 2.
- 4. The maximum total flow is v. The flow solution is given by x_{ij} , $(i,j) \in A$.

LP dual of the maximum flow model

Maximum flow - Minimum cut theorem

- An (s, t)-cut is a set of arcs which, when deleted, interrupt all flow in the network between the source s and the sink t
- ► The cut capacity equals the sum of capacities on all the arcs through the (s, t)-cut
- Finding the minimum (s, t)-cut is equivalent to solving the dual of the maximum flow problem
- ▶ Weak duality theorem: Each feasible flow x_{ij} , $(i,j) \in A$, yields a lower bound on v^* . The capacity of each (s,t)-cut yields an upper bound on v^* .
- ► Strong duality theorem: value of maximum flow = capacity of minimum cut

Optimal dual solution - minimum cut

▶ Optimal values of the dual variables: $\gamma_{ij} = \begin{cases} 1, & \text{if arc } (i,j) \text{ passes through the minimum cut,} \\ 0, & \text{otherwise.} \end{cases}$

$$\pi_k = \left\{ egin{array}{ll} 1, & \mbox{if node k can be reached from s,} \\ 0, & \mbox{otherwise.} \end{array}
ight.$$

► How is the minimum cut found using the Edmonds & Karp algorithm?

Transportation models: An example

- ► MG Auto has three plants, LA, Detroit, New Orleans, and two distribution centers, Denver and Miami
- ► Capacities of the plants: 1000, 1500, and 1200 cars
- ▶ Demands at distributions centers: 2300 and 1400 cars
- ► Transportation cost per car between plants and centers:

	Denver	Miami
LA	\$80	\$215
Detroit	\$100	\$ 108
New Orleans	\$102	\$ 68

Find the cheapest shipping schedule to satisfy the demand

Linear programming formulation of MG Auto

▶ Variables: x_{ij} = number of cars sent from plant i to distribution center j

Definition of the transportation model

- ightharpoonup m sources and n destinations \Leftrightarrow **nodes**
- $ightharpoonup a_i = ext{amount of supply at source (node)} i, i = 1, ..., m$
- $lackbox{b}_j = ext{amount of demand at destination (node) } j, j = 1, \ldots, n$
- ▶ Arc (i,j) \Leftrightarrow connection from source i to destination j
- $ightharpoonup c_{ij} = \text{cost per unit of flow on arc } (i,j)$
- ▶ Variables: x_{ij} = amount of goods shipped on arc (i,j)
- ▶ **Objective:** find $x_{ij} \ge 0$ such that the total cost is minimized while satisfying all supply and demand restrictions

Linear programming transportation model

$$\begin{array}{lll} \min z := & \displaystyle \sum_{i=1}^m \sum_{j=1}^n c_{ij} x_{ij} \\ \text{s.t.} & \displaystyle \sum_{j=1}^n x_{ij} & \leq & a_i, \quad i=1,\ldots,m \\ & \displaystyle \sum_{i=1}^m x_{ij} & \geq & b_j, \quad j=1,\ldots,n \\ & \displaystyle x_{ij} & \geq & 0, \quad i=1,\ldots,m, \quad j=1,\ldots,n \end{array}$$

- Feasible solutions exist *if and only if* $\sum_i a_i \geq \sum_j b_j$
- ► The constraint matrix has special properties (totally unimodular) ⇒ extreme points of the feasible polyhedron are integer (Chapter 8.6.3)

A balanced transportation model

▶ What if total amount of demand \neq total amount of supply? $(\sum_i a_i > \sum_j b_j \text{ (feasible) or } \sum_i a_i < \sum_j b_j \text{ (infeasible))}$

- \Rightarrow Balance the model by dummy source m+1 or destination n+1
 - ▶ Suppose $\sum_i a_i > \sum_j b_j \Rightarrow \text{Let } b_{n+1} := \sum_{i=1}^m a_i \sum_{j=1}^n b_j$
- ⇒ Balanced transportation model—equality constraints

min
$$z := \sum_{i=1}^{m} \sum_{j=1}^{n+1} c_{ij} x_{ij}$$

s.t.
$$\sum_{j=1}^{m+1} x_{ij} = a_i, \quad i = 1, \dots, m$$

$$\sum_{i=1}^{m} x_{ij} = b_j, \quad j = 1, \dots, n+1$$

$$x_{ij} \geq 0, \quad i=1, \dots, m, j=1, \dots, n+1$$

General minimum cost network flow problems

- ▶ A network consist of a set *N* of *nodes* linked by a set *A* of *arcs*
- \triangleright A distance/cost c_{ij} is associated with each arc
- \triangleright Each node *i* in the network has a net demand d_i
- ▶ Each arc carries an (unknown) amount of flow x_{ij} that is restricted by a maximum capacity $u_{ij} \in [0,\infty]$ and a minimum capacity $\ell_{ij} \in [0,u_{ij}]$
- ► The flow through each node must be balanced
- A network flow problem can be formulated as a linear program
- ► All extreme points of the feasible set are integral due to the unimodularity property of the constraint matrix (see Ch. 8.6.3)

- Two paper mills: Holmsund and Tuna
- ► Three saw mills: Silje, Graninge and Lunden
- ► Two storage terminals: Norrstig and Mellansel

Facility	Supply (m³)	Demand (m³)
Silje	2400	_
Graninge	1800	
Lunden	1400	
Holmsund		3500
Tuna		2100

► Transportation opportunities:

From	То	Price/m³	Capacity (m³)
Silje	Norrstig	20	900
Silje	Mellansel	26	1000
Silje	Holmsund	45	1100
Graninge	Norrstig	8	700
Graninge	Mellansel	14	900
Graninge	Holmsund	37	600
Graninge	Tuna	22	600
Lunden	Mellansel	32	600
Lunden	Tuna	23	1000
Norrstig	Holmsund	11	1800
Norrstig	Mellansel	9	1800
Mellansel	Norrstig	9	1800
Mellansel	Tuna	9	1800

- Objective: Minimize transportation costs
- Satisfy demand
- Do not exceed the supply
- Do not exceed the transportation capacities
- An optimal solution


```
20x_{SN} + 26x_{SM} + 45x_{SH} + 8x_{GN} + 14x_{GM}
min z :=
               +37x_{GH} + 22x_{GT} + 32x_{IM} + 23x_{IT} + 11x_{NH}
               +9\times NM + 9\times MN + 9\times MT
                                                                                         (Silje)
subject to
                                          -x_{SN} - x_{SM} - x_{SH}
                                                                             -2400
                                                                             -1800
                                                                                         (Graninge)
                                -x_{GN} - x_{GM} - x_{GH} - x_{GT}
                                                                             -1400
                                                                                         (Lunden)
                         \times SN + \times GN + \times MN - \times NM - \times NH
                                                                                         (Norrstig)
               \times_{SM} + \times_{LM} + \times_{GM} + \times_{NM} - \times_{MN} - \times_{MT}
                                                                                         (Mellansel)
                                                                               3500
                                                                                         (Holmsund)
                                            \timessh + \timesGh + \timesNH
                                           \times_{GT} + \times_{LT} + \times_{MT}
                                                                               2100
                                                                                         (Tuna)
                                                                               900
                                                             ×sn
                                                                               1000
                                                             ×sm
                                                            ×s H
                                                                               1100
                                                                               700
                                                             ×GN
                                                            ×GM
                                                                                900
                                                                                600
                                                            ×GH
                                                            ×GT
                                                                                600
                                                                                600
                                                            ×LM
                                                                               1000
                                                            XIT
                                                                               1800
                                                            ×NH
                                                                               1800
                                                            ×NM
                                                                               1800
                                                                               1800
```

▶ The columns A_j of the equality constraint matrix (Ax = b) have one 1-element, one -1-element; the remaining elements are 0

Minimum cost flows in general networks: LP model

- ightharpoonup G = (N, A) is a network with nodes N and arcs A, |N| = n
- \triangleright x_{ii} is the amount of flow on the arc from node i to node j,
- ▶ ℓ_{ij} and u_{ij} are lower and upper limits for the flow on arc (i, j),
- $ightharpoonup c_{ij}$ is the cost per unit of flow on arc (i,j), and
- $ightharpoonup d_i$ is the demand in node i

min
$$\sum_{\substack{(i,j) \in A}} \sum_{\substack{(i,j) \in A}} c_{ij} x_{ij},$$
s.t.
$$\sum_{\substack{i:(i,k) \in A}} x_{ik} - \sum_{\substack{j:(k,j) \in A}} x_{kj} = d_k, \quad k \in N,$$

$$\ell_{ij} \leq x_{ij} \leq u_{ij}, \quad (i,j) \in A.$$

Minimum cost flows in general networks: LP model and dual

The linear optimization model:

min
$$\sum_{\substack{(i,j)\in A}} \sum_{c_{ij}x_{ij},\\ s.t.} \sum_{i:(i,k)\in A} x_{ik} - \sum_{j:(k,j)\in A} x_{kj} = d_k, \quad k \in \mathbb{N},$$

$$\ell_{ij} \leq x_{ij} \leq u_{ij}, \quad (i,j) \in A.$$

Linear programming dual:

$$\begin{array}{lll} \max & \sum\limits_{k \in N} d_k y_k + \sum\limits_{(i,j) \in A} \left(\ell_{ij} \alpha_{ij} - u_{ij} \beta_{ij}\right), \\ \text{s.t.} & y_j - y_i + \alpha_{ij} - \beta_{ij} &= c_{ij}, \quad (i,j) \in A, \\ & \alpha_{ij}, \beta_{ij} &\geq 0, \quad (i,j) \in A. \end{array}$$

The simplex method for minimum cost network flows (Ch. 8.7)

- A solution is optimal if
 - the primal and dual solutions are feasible and
 - the complementary conditions are fulfilled
- ▶ Reduced cost: $\overline{c}_{ij} = c_{ij} + y_i y_j$
- ▶ Complementary conditions, $(i,j) \in A$

 - $\beta_{ij}(u_{ij}-x_{ij})=0$
- Assume that $\ell_{ij} < u_{ij}$.
- ▶ A feasible solution x_{ij} , $(i,j) \in A$, is optimal if the following hold:
 - $x_{ij} = u_{ij} \Rightarrow \alpha_{ij} = 0 \Rightarrow \text{Reduced cost: } \overline{c}_{ij} = -\beta_{ij} \leq 0$
 - $x_{ij} = \ell_{ij} \Rightarrow \beta_{ij} = 0 \Rightarrow \text{Reduced cost: } \overline{c}_{ij} = \alpha_{ij} \geq 0$
 - $\ell_{ij} < x_{ij} < u_{ij} \Rightarrow \alpha_{ij} = \beta_{ij} = 0 \Rightarrow \text{Reduced cost: } \overline{c}_{ij} = 0$

The simplex method for minimum cost network flows

- ▶ The arc (i,j) corresponds to the variable x_{ij} , $(i,j) \in A$
- ► A basic solution is characterized by the following;
 - ▶ If $\ell_{ij} < x_{ij} < u_{ij} \Rightarrow$ the arc (i,j) is in the basis $\Leftrightarrow x_{ij}$ is a basic variable
 - ▶ If $x_{ij} = \ell_{ij}$ or $x_{ij} = u_{ij} \Rightarrow$ the arc (i, j) may be in the basis $\Leftrightarrow x_{ij}$ may be a basic variable
 - ▶ There are exactly n-1 basic arcs which form a spanning tree in G (one primal equation is a linear combination of the rest and can thus be removed)

The simplex method for minimum cost flows

- 1. Find a feasible solution (a spanning tree of basic arcs)
- 2. Compute reduced costs $\overline{c}_{ij} = c_{ij} + y_i y_j$ for all non-basic arcs
- 3. Check termination criteria: If, for every arc (i,j),
 - lacktriangledown either: $\overline{c}_{ij}=0$ and $\ell_{ij}\leq x_{ij}\leq u_{ij}$,
 - ightharpoonup or: $\overline{c}_{ij} < 0$ and $x_{ij} = u_{ij}$,
 - or: $\overline{c}_{ij} > 0$ and $x_{ij} = \ell_{ij}$

hold, then STOP. x_{ij} , $(i,j) \in A$ is an optimal solution

- 4. Entering variable (arc): $(p,q) \in \arg\max_{(i,j) \in I} |\overline{c}_{ij}|$ I = the set of non-basic arcs not fulfilling the conditions in 3.
- 5. Leaving variable (arc): Send flow along the cycle defined by the current basis (spanning tree) and the arc (p,q). The arc (i,j) whose flow x_{ij} first reaches u_{ij} or ℓ_{ij} leaves the basis.
- 6. Go to step 2

The assignment model (Ch. 13.5)

- ► A special case of the network flow model (and of the transportation model)
- ▶ Given n persons and n jobs
- ▶ Given further the cost c_{ij} of assigning person i to job j
- ▶ Binary variables $x_{ij} = 1$ if person i does job j and $x_{ij} = 0$ otherwise
- Find the cheapest assignment of persons to jobs such that all jobs are done

$$\begin{array}{lll} \min & \sum_{ij} c_{ij} x_{ij} \\ \text{s.t.} & \sum_{j} x_{ij} & = & 1 & \forall i \\ & \sum_{i} x_{ij} & = & 1 & \forall j \\ & x_{ij} & \geq & 0 & \forall i, j \end{array}$$

 The optimal solution is binary (due to the totally unimodular constraint matrix)

An assignment example

- 3 children: John, Karin and Tina
- ▶ 3 tasks: mow, paint and wash.
- Given further a "cost" (time, uncomfort,...) for each combination of child/task
- How should the parents distribute the tasks to minimize the cost?

	Mow	Paint	Wash
John	15	10	9
Karin	9	15	10
Tina	10	12	8

 Choose exactly one element in each row and one in each column