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Maximum flow models (Ch. 8.6)

» Consider a district heating network with pipelines that
transports energy (in the form of hot water) from a number of
sources to a number of destinations

» The network has several branches and junctions

> Pipe segment (/,/) has a maximum capacity of Kj; units of
flow per time unit

» A pipe can be one- or bidirectional

» What is the maximum total amount of flow per time unit
through this network?

» Another application of the maximum flow model: evacuation
of buildings (also time dynamics)
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LP model for maximum flow problems

> Let xj; denote the amount of flow through pipe segment (i, ;)
(flow direction i — j)

> Let v denote the total flow from the source to the destination

» Graph: G = (V, A, K) (nodes, directed arcs, arc capacities)
(an undirected edge is here represented by two directed arcs)

max
s.t. Z (—xsj) —|— v = 0,
Ji(sj)EA
Xjg —V = 0’
J:U,t)eA
Z Xik + Z (—ij) = 0, ke V\{s,t}
ir(i,k)eA ji(kJj)EA
Xij < K,'j, (i,j) cA
xj > 0, (i,j)eA
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A solution method for maximum flow problems

(Edmonds & Karp, 1972)

1. Let v := 0 and x; := 0. Arc capacities u;; := Kj;, (i,)) € A.
2. Find a maximum capacity path P C A from s to t (modified
shortest path algorithm). The capacity of P is
o :=min{min{u; | (i,j) € P};min{x; | (,7) € P}}.
If & =0, go to step 4.
xij+u, if (i,j) € P,

3. Update the flows x;j :== ¢ x;j — &, if (j,i) € P,
Xij» otherwise,
uj— @, if (i,j) € P,
the capacities ujj := ¢ wj + @, if (j,i) € P,
ujj, otherwise,

and the total flow v := v + &I. Go to step 2.

4. The maximum total flow is v.
The flow solution is given by xj;, (i,j) € A.
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LP dual of the maximum flow model

[Primal] max v,
s.t. Z (—xs)+v = 0,
J:(s.j)eA
xip—v = 0,
J:(j,t)EA
Z Xjk + Z (—ij) = 0, k e V\{S,t}
i:(i,k)eA Ji(k,j)eA

0 < x; < Kj, (i,j))e A

[Dual] min Z Kijvii,

(ij)EA
st. —mi+mi+y > 0, (i,j)eA
e — e = 1,
Tk free, keV,
i = 0, (i,j)EA
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Maximum flow — Minimum cut theorem

> An (s, t)-cut is a set of arcs which, when deleted, interrupt all
flow in the network between the source s and the sink t

» The cut capacity equals the sum of capacities on all the arcs
through the (s, t)-cut

» Finding the minimum (s, t)-cut is equivalent to solving the
dual of the maximum flow problem

» Weak duality theorem: Each feasible flow x, (i,j) € A,
yields a lower bound on v*. The capacity of each
(s, t)-cut yields an upper bound on v*.

» Strong duality theorem: value of maximum flow = capacity
of minimum cut

Lecture 9 Applied Optimization



Optimal dual solution — minimum cut

» Optimal values of the dual variables:
~_f 1, ifarc (i,j) passes through the minimum cut,
Vi = 0, otherwise.

| 1, if node k can be reached from s,
Tk = 0, otherwise.

» How is the minimum cut found using the Edmonds & Karp
algorithm?
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Transportation models: An example

» MG Auto has three plants, LA, Detroit, New Orleans, and two
distribution centers, Denver and Miami
» Capacities of the plants: 1000, 1500, and 1200 cars
» Demands at distributions centers: 2300 and 1400 cars
» Transportation cost per car between plants and centers:
Denver Miami
LA $80 $215
Detroit $100 $108
New Orleans  $102 $68
» Find the cheapest shipping schedule to satisfy the demand

New Orleans
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Linear programming formulation of MG Auto

> Variables: x;j = number of cars sent from plant i to
distribution center j

min z= 80x71+215x12+100x21+108x20+102x31+68x32

s.t. x11  +x12 < 1000 (LA)
X21 +X22 < 1500 (Detr)
x31 +x32 < 1200 (NO)
X11 +X21 +X31 > 2300 (Den)
X12 +Xx20 +x32 > 1400 (Mi)
X11, X12, X21, X22, X31, X322 2> 0
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Definition of the transportation model

m sources and n destinations < nodes
aj = amount of supply at source (node) i, i=1,...,m
bj = amount of demand at destination (node) j, j=1,...,n

cij = cost per unit of flow on arc (/,/)

Variables: xjj = amount of goods shipped on arc (/, )
Objective: find xj; > 0 such that the total cost is minimized
while satisfying all supply and demand restrictions

>
>
>
» Arc (i,j) < connection from source i to destination j
>
>
>

IA
&L
|

IA
NS
|
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Linear programming transportation model

m n
min z 1= E gc,-jx,-j

i=1 j=1

n

s.t. ZXU < &, i=1,....m (supply)
j=1
m
Zx,-j > b, j=1,...,n (demand)
i=1

xj =2 0, i=1....m j=1,...,n

> Feasible solutions exist if and only if |3 ;ai > ; bj

» The constraint matrix has special properties (totally
unimodular) = extreme points of the feasible polyhedron are
integer (Chapter 8.6.3)
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A balanced transportation model

» What if total amount of demand # total amount of supply?

(X-iai > 2. b (feasible) or > ;aj < ; bj (infeasible))

2

minz :=
s.t.

_j 1 CijXij

Zj 1 Xij

2;11 Xij

Xij

VIV IA

aj, Ii=1,...,m
bj, j=1,...,n
0, i=1,....mj=1,...,n

= Balance the model by dummy source m+1 or destination n+1

» Suppose ) _;aj > Zj bj = Let bpi1:=>.1" aj —

27:1 bj

= Balanced transportation model—equality constraints

minz =
s.t.

+1
Py Zn 1 C{JX’J
_l’_
Zjn 1 Xij
m
ZI:]. X’J

Xij

>

aj, Ii=1,...,m
bj, j=1,...,n+1
0, i=1,....,m j=1,..., 1
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General minimum cost network flow problems

A network consist of a set N of nodes linked by a set A of arcs

v

v

A distance/cost cjj is associated with each arc
» Each node i in the network has a net demand d;

» Each arc carries an (unknown) amount of flow x;; that is
restricted by a maximum capacity uj; € [0,00] and a minimum
capacity £ € [0, ujj]

» The flow through each node must be balanced
» A network flow problem can be formulated as a linear program

» All extreme points of the feasible set are integral — due to the
unimodularity property of the constraint matrix (see Ch. 8.6.3)
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Minimum cost flow in a general network: Example

» Two paper mills: Holmsund and Tuna

» Three saw mills: Silje, Graninge and Lunden

» Two storage terminals: Norrstig and Mellansel
Facility Supply (m3) Demand (m?3)
Silje 2400
Graninge 1800
Lunden 1400
Holmsund 3500
Tuna 2100
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Minimum cost flow in a general network: Example

» Transportation opportunities:

From To Price/m® Capacity (m?)
Silje Norrstig 20 900
Silje Mellansel 26 1000
Silje Holmsund 45 1100
Graninge  Norrstig 8 700
Graninge  Mellansel 14 900
Graninge  Holmsund 37 600
Graninge Tuna 22 600
Lunden Mellansel 32 600
Lunden Tuna 23 1000
Norrstig  Holmsund 11 1800
Norrstig  Mellansel 9 1800
Mellansel  Norrstig 9 1800
Mellansel  Tuna 9 1800
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Minimum cost flow in a general network: Example

Objective: Minimize transportation costs
Satisfy demand
Do not exceed the supply

Do not exceed the transportation capacities

vV v.v v VY

An optimal solution
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Minimum cost flow in a general network: Example

min z := 20xgy + 26xgp + 45xsy + 8xgy + l4xgm
+37xGH + 22xGT + 32X M + 23xLT + 1lxpypy
+Oxym + Ixpn + OxmT

subject to —X§N — XSM — XSH —2400  (Silje)
—XGN — XGM — XGH — XGT —1800 (Graninge)
—XLM — XLT —1400 (Lunden)

0 (Norrstig)
0 (Mellansel)
3500 (Holmsund)

xsn + XGn + XMN — XM — XNH
XsM + XLm + XM + XNM — XMN — XMT
XSH + XGH + XnH

XGT + XLT + *mMT = 2100 (Tuna)
0 < xgny < 900
0 < xsm < 1000
0 < xsy < 1100
0 < xgn < 700
0 < xgm < 900
0 < xgy < 600
0 < xgr < 600
0 < xim < 600
0 < xir < 1000
0 < xyy < 1800
0 < xym < 1800
0 < xuny < 1800
0 < xyr < 1800

> The columns A; of the equality constraint matrix (Ax = b)
have one 1-element, one —1-element; the remaining elements
are 0
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Minimum cost flows in general networks: LP

model

=n

G=(

xjj is the amount of flow on the arc from node / to node j,

¢jj and ujj are lower and upper limits for the flow on arc (i,;),

cjj is the cost per unit of flow on arc (/,/), and

vV v v v Y

d; is the demand in node /

min > CijXijs
(iJ)eA
s.t. Z Xik — Z Xkj = de, keN,
i:(i,k)€A Ji(kj)EA

b < x5 < wy, (1)) €A
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Minimum cost flows in general networks: LP

model and dual

The linear optimization model:

min > CijXijs
(iy)eA
s.t. Z Xik — Z Xkj = dye, keN,
ii(i,k)EA ji(kj)EA

f,’jSX,’j < ujj, (f,j)EA.

Linear programming dual:

max > diyi + >, (Gjaij — uiiBi)
keN (i,))EA

s.t. yi—yit+aij—B; = cj (i,j) €A,
aljvﬁlj > 0, (I,J)EA
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The simplex method for minimum cost network

flows (Ch. 8.7)

» A solution is optimal if

» the primal and dual solutions are feasible and
» the complementary conditions are fulfilled

> Reduced cost: ¢jj = ¢jj +yi — y;

» Complementary conditions, (i,j) € A
> aij(xj — ) =0
> Bij(ui — xij) =0
> x;(Cjj — aj + Bij) =0

> Assume that ¢;; < uj;.

> A feasible solution xjj, (i,j) € A, is optimal if the following
hold:
» xj = uj = «jj =0 = Reduced cost: ¢;j = —f;; <0
» xj = L = B =0 = Reduced cost: ¢; = aj; > 0
> E,-j<x,-j<u,-j:>oz,-j:ﬂ,-j:0:>Reducedcost:f;jzo
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The simplex method for minimum cost network

flows

» The arc (i, /) corresponds to the variable xj, (i,j) € A
» A basic solution is characterized by the following;

» If £ij < xjj < ujj = the arc (i,j) is in the basis
< Xjj is a basic variable

» If xjj = £jj or xjj = ujj = the arc (i,j) may be in the basis
& xjj may be a basic variable

» There are exactly n — 1 basic arcs which form a spanning tree
in G (one primal equation is a linear combination of the rest
and can thus be removed)
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The simplex method for minimum cost flows

1. Find a feasible solution (a spanning tree of basic arcs)

2. Compute reduced costs Tjj = cjj + y; — y; for all non-basic arcs

3. Check termination criteria: If, for every arc (i,J),
» either: T; = 0 and £ < x;; < uy;,
» or: Cjj <0 and x;; = uy,
» or: Cjj > 0 and x;; = {j;
hold, then STOP. xj;, (i,j) € A is an optimal solution

4. Entering variable (arc): (p, q) € arg max; j)e/ [Cjjl
| = the set of non-basic arcs not fulfilling the conditions in 3.

5. Leaving variable (arc): Send flow along the cycle defined by
the current basis (spanning tree) and the arc (p, q). The arc
(i,/) whose flow x;; first reaches uj; or ¢j; leaves the basis.

6. Go to step 2
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The assignment model (Ch. 13.5)

> A special case of the network flow model (and of the
transportation model)

» Given n persons and n jobs

> Given further the cost cj; of assigning person i to job j

> Binary variables xjj = 1 if person i does job j and x;; =0
otherwise

» Find the cheapest assignment of persons to jobs such that all
jobs are done

min > CijXij
s.t. % = 1 V/.
Zix,-j =1 Vj
xj = 0 Vij
» The optimal solution is binary (due to the totally unimodular
constraint matrix)
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An assignment example

3 children: John, Karin and Tina

3 tasks: mow, paint and wash.

v

v

» Given further a “cost” (time, uncomfort,...) for each
combination of child/task

» How should the parents distribute the tasks to minimize the

cost?
Mow Paint Wash

John 15 10 9
Karin 9 15 10
Tina 10 12 8

» Choose exactly one element in each row and one in each
column
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