Maintenance scheduling optimization

Ann-Brith Strömberg*

*Mathematical Sciences, Chalmers and University of Gothenburg

2014-04-04

Maintenance optimization — a background

- Invitation 2000 from Volvo Aero Corporation (VAC, nowadays GKN Aerospace): maintenance of the RM12 jet engine
- Paired PhD project between applied math/optimization and math statistics/material fatigue and reliability
- Optimization student: a model for opportunistic maintenance; superior to simpler policies
- Math statistics student: models for the determination of life distributions based on crack growth
- Continuation projects: GKN; planning maintenance of components in wind power plants and scheduling of rail grinding

A conversation with Bo Hägg, CEO Underhållsföretagen

- Maintenance = obtain reliability at the least cost
- Maint. costs/year: 14K Billion SEK (EU), 275 Billion SEK (S)
- Maintenance is often seen merely as a cost
- Maintenance is sometimes done too often—inspections and measurements may damage the systems
- Sometimes—like with road/rail infrastructure and "Miljonprogramhusen'—it is performed seldom
- Truth: well performed maintenance is an investment in availability and safety

Maintenance principles

- Preventive maintenance: actions that prevent failure
- Corrective maintenance: actions after failure, repairs
- Condition based maintenance: measurements → predictions
 → actions according to a maintenance principle
- Opportunistic maintenance: when maintenance must be performed, make also some (additional) preventive maintenance actions

A simple example, I

- A system with *n* components
- Life of component *i* : *T_i* time units (intervals)
- Time horizon: *T* time units (e.g. contract period)
- Cost of a spare component of type *i* at time *t*: *c_{it}* monetary units
- Cost for performing any maintenance at time *t*: *d_t* monetary units

A simple example, II

- Variables are logical do something or not
- Model uses binary variables:

$$x_t = \begin{cases} 1, & ext{if "something" is done at time } t \\ 0, & ext{otherwise} \end{cases}$$

- A decision often implies other necessary decisions
- Example: if component *i* shall be replaced at time *t* maintenance must be performed
- Such logical relations are equivalent to linear constraints:

if A then B
$$\iff x_A \leq x_B$$

(1a)

The basic replacement problem, I

Mathematical model

• Goal: minimize the total cost for a working system during the contract period:

$\underset{(x,z)}{\text{minimize}} \quad \sum_{t=1}^{T} \left(\sum_{i=1}^{N} c_{it} x_{it} + d_t z_t \right),$

subject to
$$\sum_{t=\ell+1}^{N} x_{it} \ge 1$$
, $\ell = 0, ..., T - T_i, i = 1, ..., N$, (1b)

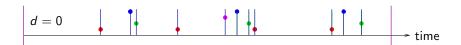
$$\begin{array}{ll} x_{it} \leq z_t, & t = 1, \dots, T, \ i = 1, \dots, N, \\ x_{it} \geq 0, & t = 1, \dots, T, \ i = 1, \dots, N, \\ z_t \leq 1, & t = 1, \dots, T, \\ x_{it}, z_t \in \{0, 1\}, \ t = 1, \dots, T, \ i = 1, \dots, N \end{array}$$
(1c) (1d)

The basic replacement problem, II

- Objective (1a): minimize the total cost of having a working system during the contract period
- Constraint (1b): for any given item *i* in the system, the component must be replaced at some point during *every* time interval of *T_i* time steps
- Constraint (1c): we cannot perform any replacement without paying the fixed cost d_t for performing a maintenance operation; once we do pay, any maintenance action becomes possible (at no extra fixed cost) at that time step
- Constraints (1d)–(1f) ensure that the variables take only meaningful values

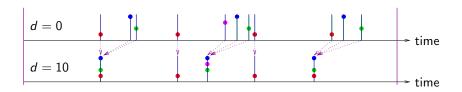
Opportunistic maintenance or not?

- Example: four components with different prices and lives
- A replacement is marked with a dot; its colour represents the type of component replaced



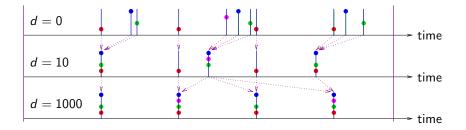
Opportunistic maintenance or not?

- Example: four components with different prices and lives
- A replacement is marked with a dot; its colour represents the type of component replaced



Opportunistic maintenance or not?

- Example: four components with different prices and lives
- A replacement is marked with a dot; its colour represents the type of component replaced
- The larger the fixed cost, the more beneficial sl opportunistic maintenance becomes; also more items are replaced



Constraint structure—example

• Component 3:
$$\sum_{t=\ell+1}^{\ell+T_3} x_{3t} \ge 1, \quad \ell = 0, \dots, T - T_3$$

• $T = 8, T_3 = 4 \implies \sum_{t=\ell+1}^{\ell+4} x_{3t} \ge 1, \quad \ell = 0, \dots, 4$

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_{31} \\ x_{32} \\ \vdots \\ x_{38} \end{bmatrix} \ge \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

Property I: the replacement problem is NP-hard

Theorem

Set covering is polynomially reducible to the replacement problem

- This essentially mean that we *cannot* expect to find an optimal solution in a time that is proportional to a polynomial function of the problem size $(T(N + 1) \text{ variables and } \approx 4NT \text{ constraints})$
- Basic complexity theory: Chapter 2.6 in the course book

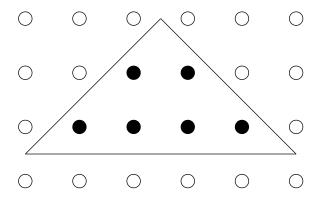
Property II: with fixed z the problem over x is easy

- The constraint matrix has the "consecutive ones" property
- \Rightarrow For fixed values of z, the problem over x can be solved as a linear program
 - For each *i*, the linear programming dual problem can be solved by a "greedy" algorithm ⇒ primal solution by complementarity; see [a], Algorithm 1, page 297
 - The latter is typically 5–40 times faster than solving as a general linear program, and 25–400 times faster when costs are monotone with time (i.e., ∀t either c_{it} ≤ c_{i,t+1} or c_{it} ≥ c_{i,t+1}); see [a], Algorithm 2, page 299

[a] T. Almgren, N. Andréasson, M. Patriksson, A.-B. Strömberg, A. Wojciechowski, M. Önnheim (2012): *The opportunistic replacement problem: theoretical analyses and numerical tests*, Mathematical Methods of Operations Research, 76(3) pp. 289–319. http://link.springer.com/article/10.1007%2Fs00186-012-0400-y

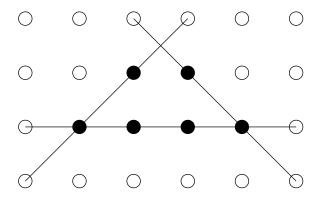
Property III: all inequalities are facet defining

No inequalities are facet defining



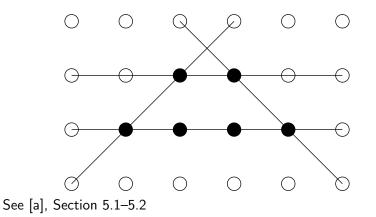
Property III: all inequalities are facet defining

All inequalities are facet defining



Property III: all inequalities are facet defining

Integral polyhederon



A generalized model

New variable definition

Define the set

$$\mathcal{I} := \{ (s, t) \mid 0 \le s < t \le T + 1; \, s, t \in Z \}$$

of replacement intervals and introduce the variables

$$x_{st}^{i} = \begin{cases} 1, & \text{if component } i \text{ receives PM at the} \\ & \text{times } s \text{ and } t, \text{ and not in-between}, \\ 0, & \text{otherwise}, \end{cases} \quad \begin{array}{l} i \in \mathcal{N}, \\ (s,t) \in \mathcal{I} \end{cases}$$

and

$$z_t = egin{cases} 1, & ext{if maintenance occurs at time } t, \ 0, & ext{otherwise}, \end{cases}$$
 $t \in \mathcal{T}.$

A generalized model

minimize		$z_t + \sum_{i \in \mathcal{N}} \sum_{(s,t) \in \mathcal{I}} c^i_{st} x^j_{st}$	t,	(2a)
subject to	$\sum_{s=0}^{t-1} x_{st}^i$	$\leq z_t,$	$i\in\mathcal{N},t\in\mathcal{T},$	(2b)
	$\sum x_{st}^i$	$=\sum_{r=t+1}^{T+1} x_{tr}^i,$	$i \in \mathcal{N}, t \in \mathcal{T},$	(2c)
	$\sum_{t=1}^{T+1} x_{0t}^i$	$t_{t} = 1,$	$i \in \mathcal{N},$	(2d)
	x_{st}^i z_t	$\in \{0,1\}, \ \in \{0,1\},$	$egin{aligned} & i \in \mathcal{N}, (s,t) \in \mathcal{I}, \ & t \in \mathcal{T}. \end{aligned}$	(2e) (2f)

Ann-Brith Strömberg

Maintenance optimization

On the GKN project

- Aircraft engines are expensive:
 - Spare components cost up to 2 MSEK
 - Total cost of maintenance of one engine: 15-30 MSEK
 - Maximizing "time on wing" is important, both for civil and military aircraft
- The aircraft engine RM12 consists of 7 modules and 61 components in total
- A mathematical model has been constructed for the entire engine maintenance, including work costs for (dis)assembling the necessary modules and components for each maintenance occasion
- This model has slightly less than 6000 binary variables

Results on the GKN problems

- An individual engine module with 10 components: cost reduction 35%; reduction of # maint. occasions 7% (compared with a simple policy similar to that used at GKN)
- Complete engine of 7 modules (61 components):
 - Cost reduction compared to maintaining (optimally) each individual module: 12%
 - Reduction of # maint. occasions: 60%
- Product development: found 5 components that can potentially reduce maintenance costs more than 5% through prolonged lives

Maintenance of rails and wheels, I

- Paired PhD project in collaboration with CHARMEC
- Background: increased wear of rails and wheels due to an increase in speeds and loads
- Aim to develop decision support tools for the optimization of inspection and maintenance of rails and wheels wrt. LCC, safety and maintenance logistics
- The other PhD student (at CHARMEC) models the progressive degradation of rails and wheels
- Will result in advanced knowledge on how component condition indicators can be efficiently used in an optimization

Maintenance of rails and wheels, II

- The picture below shows how a component of a rail is degraded over time (measured in portions of the rail sections having crack lengths in given intervals)
- Several levels of maintenance can be performed, with different effects (and different costs)
- The optimization will determine which maintenance action is the most appropriate at any given time

