MVE165/MMG631

Linear and Integer Optimization with Applications
Lecture 1

Introduction; course map; operations research; modelling; graphic solution

Ann-Brith Strömberg

2014-03-18

Staff

Examiner and main lecturer

Ann-Brith Strömberg (anstr@chalmers.se, room L2087)

Course assistant

Zuzana Šabartová (zuzana@chalmers.se, room L2099)

Problem solving sessions

- Zuzana Šabartová (zuzana@chalmers.se, room L2099)
- Kin Cheong Sou (kincheong@chalmers.se, room L2100)

Guest lecturers

- Emil Gustavsson (Mathematical Sciences)
- Ola Carlson (Energy and Environment)

Course homepage and information

Course homepage

- www.math.chalmers.se/Math/Grundutb/CTH/mve165/1314
- Details, information on assignments and computer exercises, deadlines. lecture notes. exercises etc
- Will be updated with new information every week

PingPong

- https://pingpong.gate.chalmers.se
- Software download (AMPL & CPLEX)
- Hand-in of assignments

Organization

- Lectures mathematical optimization theory
- Computer exercise learn how to use software solvers
- Guest lectures applications of optimization ⇒ assignments
- Assignments modelling, use solvers, analyze solutions, write reports, opposition & oral presentation
- Assignment work should be done in groups of \leq two persons
- Define your project groups on the PingPong page of MVE165/MMG631
- The name of the project group must be: "FirstName1 Surname1 - FirstName2 Surname2"
- GU and PhD students not having PingPong-entries: sign a list
- Computers are reserved in F-T7203 on Tuesdays and Wednesdays, 13.15–15.00. (Week 12: Tuesday 13.15-15.00 (F-T7203) and Friday 13.15-17.00 (MVF24-25)). Teachers will be present only when indicated in the course plan on the home page.

Software

- A computer exercise on linear optimization and software is found on the homepage. You are highly recommended to perform it to prepare for the assignments.
- AMPL-packages to install on your own computer (linux, mac, windows) is available via Ping-pong. Read the agreement text! Also presented on Lecture 2.
- Matlab
- A java-applet for learning the branch-and-bound algorithm

Course evaluation process

- Questionnaires will be sent out to all students registered for the course after the exam week
- The examiner calls the course representatives to the introductory, (recommended) middle, and final meetings
- Course representatives
 - ??
 - ??

Literature

Main course book:

- English version: Optimization (2010)
- Swedish version: Optimeringslära (2008)

by J. Lundgren, M. Rönnqvist, and P. Värbrand. Studentlitteratur.

Exercise book:

- English version: Optimization Exercises (2010)
- Swedish version: Optimeringslära Övningsbok (2008)

by M. Henningsson, J. Lundgren, M. Rönnqvist, and P. Värbrand. Studentlitteratur.

- Cremona/Studentlitteratur/Adlibris/...
- Also some hand-outs (denoted in the lecture notes)

- Perform **three project assignments** in groups of two students
 - For Assignment 3 there will be two alternatives
- Written reports of three assignments
- A written opposition to another group's report of Assignment 2
- An oral presentation of Assignment 3
- Presence at one full oral presentation session
- To be able to receive a grade higher than 3 or G, the written reports and opposition as well as the oral presentation must be of high quality. Students aiming at grade 4, 5, or VG must also pass an oral exam

Overview of the lectures and course contents

Mathematical subjects

- Linear optimization models, modelling, theory, solution methods, and sensitivity analysis
- Discrete optimization models. properties, and solution methods
- Optimization problems that can be modelled as flows in networks, theory, and solution methods
- Multi-objective optimization
- Overview of non-linear optimization models, properties, and solution methods
- Mixes of the above

Activities

- Applications of optimization
- Mathematical modelling
- Theory mathematical properties of models
- Solution techniques algorithms
- Software solvers

Optimization: "Do something as good as possible"

- Something: Which are the decision alternatives?
 - $x_{ij} = \begin{cases} 1 & \text{if customer } j \text{ is visited } directly \text{ after customer } i \\ 0 & \text{else} \end{cases}$
 - $y_{ik} = \begin{cases} 1 & \text{if customer } i \text{ is visited by vehicle } k \\ 0 & \text{else} \end{cases}$
- Possible: What restrictions are there?
 - Each customer should be visited exactly once
 - Time windows, transport needs and capacity, pick up at one customer – deliver at another, different types of vehicles, ...
- Good: What is a relevant optimization criterion?
 - Minimize the total distance / travel time / emissions / waiting time / ...

The classical travelling salesperson problem

 Variants of routing problems: e.g., refrigerated goods, transportation service for disabled persons, school buses, ...

Examples of application areas

Logistics: production and transport

- Optimize routes for transports, snow removal, school buses, ...
- Location of stores
- Planning of wood cut and transports
- Packing of containers
- Production planning and scheduling

Energy

- Energy production planning
- Investment in energy production technology
- Location of power plants and infrastructure

Finance

- Financial risk management
- Portfolio optimization
- Investment planning

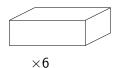
Medicine

- Compute radiation directions/intensities for cancer treatment
- Reconstruct images from x-ray measurements

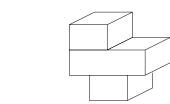
Produce tables and chairs from two types of blocks

Small block

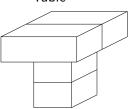
Large block



Chair



Table



A manufacturing example, continued

- A chair is assembled from one large and two small blocks
- A table is assembled from two blocks of each size
- Only 6 large and 8 small blocks are avaliable
- A table is sold at a revenue of 1600:-
- A chair is sold at a revenue of 1000:-
- Assume that all items produced can be sold and determine an optimal production plan

A mathematical optimization model

- Something What decision alternatives? ⇒ Variables
 - x_1 = number of tables produced and sold
 - x_2 = number of chairs produced and sold
- Possible What restrictions? ⇒ Constraints
 - Maximum supply of large blocks: 6

$$2x_1+x_2\leq 6$$

Maximum supply of small blocks: 8

$$2x_1+2x_2\leq 8$$

• Physical restrictions (also: x_1, x_2 integral)

$$x_1, x_2 \geq 0$$

- **Good** Relevant optimization criterion? ⇒ Objective function
 - Maximize the total revenue

$$1600x_1 + 1000x_2 \rightarrow \mathsf{max}$$

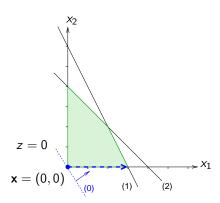
Solve the model using LEGO and marginal values

Start at no production:

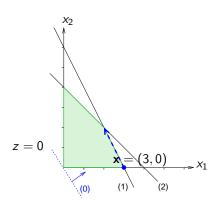
$$x_1 = x_2 = 0$$

Use the "best marginal profit" to choose the item to produce

- x₁ has the highest marginal profit (1600:-/table) \Rightarrow produce as many tables as possible
- At $x_1 = 3$: no more large blocks left.

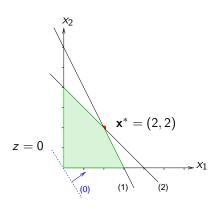


- The marginal value of x_2 is now 200:- since taking apart one table (-1600:-)yields two chairs (+2000:-) \Rightarrow 400:-/2 chairs
 - Increase x_2 maximally \Rightarrow decrease x1
 - At $x_1 = x_2 = 2$: no more small blocks



Solve the model using LEGO and marginal values

• The marginal value of x_1 is negative (to build one more table one has to take apart two chairs \Rightarrow -400:-) The marginal value of x_2 is -600:- (to build one more chair one table must be taken apart) \Longrightarrow Optimal solution: $x_1 = x_2 = 2$



(0)

Geometric solution of the model

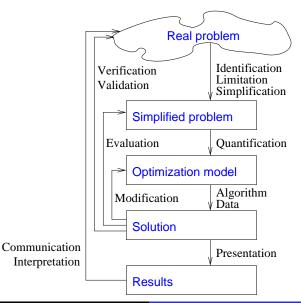
maximize
$$z=1600x_1+1000x_2$$
 subject to $2x_1+x_2\leq 6$ $2x_1+2x_2\leq 8$ $x_2 x_1, x_2\geq 0$ $x^*=(2,2)$

Operations Research (OR) (Swedish: Operationsanalys)

- Scientific view on problem solving regarding complex systems
- "OR means to prepare a foundation for rational decisions by utilizing systematic scientific methods and — when possible and meaningful — by utilizing quantitative models"
- The problem is considered as a system of components which cooperate and influence each other
- The activities studied are described by models, used to
 - better understand the depicted system,
 - understand the consequences of different decisions, and
 - choose the "best" alternative due to some criterion.

Introduction Optimization & OR Modelling Models Definition Example OR & optimization

The process of optimization

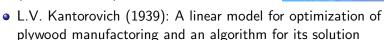


History of Operations Research

- During world war II decision problems became systematically treated: Operations Research
- After the war: use of operations research for civil operations
- The ideas spread to many countries
- Early operations research include inventory planning

- Euler (1735): Seven bridges of Köningsberg (graph theory)
- Gauss (1777–1855): 1st optimization technique steepest descent
- W.R. Hamilton (1857): "icosian game" ⇒ the travelling salesperson problem (Hamilton cycle)

A few moments in optimization history



- George B. Dantzig (1947): Linear programming the simplex algorithm (exponential time)
 - Program
 ⇔ military training and logistics schedules
- Kantorovich and Koopmans (1975): Nobel Memorial Prize in Economic Sciences
- N. Karmarkar (1984) algorithm for linear programming (polynomial time)

Optimization modelling: Electric power capacity expansion

- An electric utility will install two generators (j = 1, 2) with different fixed and operating costs, to meet the demand within its service region.
- Each day is divided into three parts (i = 1, 2, 3) of equal duration, during which the demand, d_i , takes a base, medium, or peak value, respectively.
- The fixed cost per unit capacity of generator j is amortized over its lifetime and amounts to c_i per day.
- The operating cost of generator j during the ith part of the day is f_{ii} .
- The availability of generator j is $a_i \in [0,1]$, j = 1,2.
- If the demand during the ith part of the day cannot be served due to lack of capacity, additional capacity must be purchased at a cost of g_i per unit.
- The capacity of each generator j is required to be at least b_i .

Define the decision variables

- Let the variables x_i , j = 1, 2, represent the installed capacity of generator i.
- Let the variables y_{ii} denote the operating level of generator iduring the ith part of the day.
- Let the variable w; denote the capacity that needs to be purchased, in order to satisfy unmet demand during the ith part of the day.
- We interpret availability to mean that the operating level of generator j, at any given time is at most $a_i x_i$.

General mathematical optimization models

$$\left[\begin{array}{ll} \text{minimize or maximize} & f(x_1,\ldots,x_n) \\ \text{subject to} & g_i(x_1,\ldots,x_n) & \left\{\begin{array}{ll} \leq \\ = \\ \geq \end{array}\right\} & b_i, \quad i=1,\ldots,m \end{array}\right]$$

- x_1, \ldots, x_n are the decision variables
- f and g_1, \ldots, g_m are given functions of the decision variables
- b_1, \ldots, b_m are specified constant parameters
- The functions can be nonlinear, e.g. quadratic, exponential, logarithmic, non-analytic, ...
- In general, linear forms are more tractable than non-linear

Linear optimization models (programs)

- The capacity expansion model is a linear program (LP), i.e., all relations are described by linear forms
- A general linear program:

• A general linear program:
$$\begin{bmatrix} & \text{min or max} & c_1x_1+\ldots+c_nx_n \\ & \text{subject to} & a_{i1}x_1+\ldots+a_{in}x_n & \left\{\begin{array}{c} \leq \\ = \\ \geq \end{array}\right\} & b_i, \quad i=1,\ldots,m \\ & x_j & \geq & 0, \quad j=1,\ldots,n \end{array} \end{bmatrix}$$

• The non-negativity constraints on x_i , j = 1, ..., n are not necessary, but usually assumed (reformulation always possible)

Discrete/integer/binary modelling

- A variable is called discrete if it can take only a countable set of values, e.g.,
 - Continuous variable: $x \in [0, 8] \iff 0 \le x \le 8$
 - Discrete variable: $x \in \{0, 4.4, 5.2, 8.0\}$
 - *Integer* variable: $x \in \{0, 1, 4, 5, 8\}$
- A binary variable can only take the values 0 or 1, i.e., all or nothing

E.g., a wind-mill can produce electricity only if it is built

- Let y = 1 if the mill is built, otherwise y = 0
- Capacity of a mill: C
- Production $x \le Cy$ (also limited by wind force etc.)
- In general, models with only continuous variables are more tractable than models with integrality/discrete requirements on the variables, but exceptions exist! More about this later.