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Flows in networks, in particular shortest paths

A path from node 5 to

node 3
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A flow network
◮ Supply nodes: S, G, L
◮ Demand nodes: H, T
◮ Storage: M, N
◮ Limited capacities on links
◮ Minimize costs for

transport and storage
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Network models—examples (Ch. 8)

Many different problems can be formulated as graph or network
flow models:

◮ Find the total capacity of a given water pipeline network

◮ Find a time schedule (starting and completion times) for the
activities in a project

◮ How much goods should be transported from each supplier to
each point of demand in a transportation system, and which
links should be used to what extent
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A linear programming formulation: shortest path from node

s ∈ N to node t ∈ N

◮ For each arc (i , j) ∈ A, let xij be the flow on the arc
◮ Flow balance in each node k ∈ N
◮ xij = 1 if arc (i , j) is in the shortest path and xij = 0 otherwise
◮ Linear programming formulation (assume dij ≥ 0):

min
∑

(i ,j)∈A

dijxij ,

s.t.
∑

i :(i ,k)∈A

xik −
∑

j :(k,j)∈A

xkj =







−1, k = s,

1, k = t,

0, k ∈ N \ {s, t},
xij ≥ 0, (i , j) ∈ A.

◮ Linear programming dual:

max yt − ys ,

s.t. yj − yi ≤ dij , (i , j) ∈ A

yk free, k ∈ N
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The shortest path problem (Ch. 8.4)

◮ Given: a network of nodes N, (directed) arcs A, and arc
distances dij , (i , j) ∈ A

◮ Find the shortest path from a source node (s ∈ N) to a
destination node (t ∈ N)
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Principle of optimality formulated by Bellman’s equations

◮ In a graph with no negative cycles, optimal paths have optimal
subpaths

◮ A shortest path from node s node to t that passes through
node k contains a shortest path from node s node to k

◮ Let yj denote the length of the shortest path from node s to
node j

◮ Bellmans equations:
◮ ys = 0
◮ yj = min

i

{

yi + cij : arc/edge (i , j) exists
}

for all j 6= s
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Solution method I: Bellman’s equations

◮ If the graph is directed without cycles: solve Bellman’s
equations in topological order

◮ Shortest path from node 1 to each of the other nodes
(1,5,2,3,4):

◮ y1 = 0
◮ y5 = min{∞} = min{∞} = ∞
◮ y2 = min{∞; y1 + c12; y5 + c52} = min{∞; 0 + 5;∞} = 5
◮ y3 = min{∞; y1 + c13} = min{0 + 4} = 4
◮ y4 = min{∞; y1 + c14; y2 + c24; y3 + c34; y5 + c54} =

min{∞; 0 + 7; 5 + 3; 4 + 2;∞+ 2} = 6
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◮ y1 = 0, y2 = 5, y3 = 4, y4 = 6, y5 = ∞
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Solution method II: Dijkstra’s algorithm

◮ The graph may contain cycles but all edge costs must be
nonnegative (i.e., cij ≥ 0)
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◮◮

◮ Solve the example on the board
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Algorithms for the shortest path problem: Dijkstra (Ch.8.4.2)

◮ Find the shortest path between node s and node i when all
arcs distances are non-negative

◮ N = set of all nodes; source node s ∈ N

◮ dij = distance on link from i to j for all i , j ∈ N

◮ dij = ∞ if no direct link from i to j

Step 0: S := {s}, S̄ := N \ {s}, and yi := dsi , i ∈ N

Step 1:

(a) If S̄ = ∅, stop. Else find node j such that yj = mini∈S̄ yi

S := S ∪ {j} and S̄ := S̄ \ {j}
(b) For all k ∈ S̄ and i ∈ S :

If yk > yi + dik set yk := yi + dik and pred(k) := i

◮ The vector pred keeps track of the predecessors

◮ Dijkstra’s algorithm actually finds shortest paths from the
source to all others nodes (this is not formulated in the LP)
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Example: Dijkstra’s algorithm

Find the shortest path from node 1 to all other nodes (Homework)
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Negative lengths of edges and negative cycles
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◮ Negative length of edges: extend Dijkstra’s algorithm according
to “move nodes back from S to S̄” (Ford’s algorithm)

◮ There may be a cycle of negative total length

⇒ “Length” of the shortest path → −∞

⇒ Ford’s algorithm either finds a shortest path or detects a cycle
with a negative total length
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Algorithms for the shortest path problem: Floyd–Warshall

(Ch. 8.4.2)

◮ Computes shortest paths between each pair of nodes

◮ Negative distances are allowed; negative cycles are detected

◮ Idea: Three nodes i , k , j and distances cik , ckj , and cij

◮ i → k → j is a short-cut if cik + ckj < cij

◮ In each iteration 1 . . . k , check whether cij can be improved by
using the short-cut via k

◮ Administration of the algorithm: Maintain two matrices per
iteration: D[k ] for the distances and pred [k ] to keep track of
the predecessor of each node
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Floyd–Warshall’s algorithm

Step 0: Initialize D[0] and pred [0]

Step k: ◮ D[k ] := D[k − 1], pred [k ] := pred [k − 1]
For each element dij in D[k ]:
If dik + dkj < dij , set dij := dik + dkj and predij [k ] := k

Set k := k + 1
If k > n stop, else repeat Step k

Find the shortest path from node 3 to all other nodes
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Example: Most reliable route

◮ Mr Q drives to work daily
◮ All road links he can choose for a path to work are patrolled by

the police
◮ It is possible to assign a probability pij ∈ [0, 1] of not being

stopped by the police on link (i , j)
◮ Mr Q wants to find the “shortest” (safest?) path in the sense

that the probability of being stopped is as low as possible
◮ maximize Prob(not being stopped)
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◮ Ex. 1 → 4: max{p12p24; p13p34} = max{0.2 · 0.35; 0.8 · 0.3}
◮ Note: This version cannot be formulated as a linear program
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Alternative objectives ⇒ Variants of Bellman’s equations

◮ Most reliable path (failure probability pij ∈ [0, 1] for arc (i , j)):

◮ ys = 1
◮ yj = max

i

{

yi · pij : arc/edge (i , j) exists
}

for all j 6= s

◮ Highest capacity path (capacity Kij ≥ 0 on arc (i , j)):

◮ ys = ∞
◮ yj = max

i

{

min{yi ;Kij} : arc/edge (i , j) exists
}

, j 6= s
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