MVE165/MMG631
Linear and integer optimization with applications

Lecture 11
Shortest paths and network flows; linear
programming formulations of flows in networks

Ann-Brith Strémberg

2014-05-06

Lecture 11 Linear and integer optimization with applications

Flows in networks, in particular shortest paths

A flow network

v

Supply nodes: S, G, L
Demand nodes: H, T
Storage: M, N

Limited capacities on links
Minimize costs for
transport and storage

A path from node 5 to
node 3

vV vy VvVYyy

Lecture 11 Linear and integer optimization with applications

Network models—examples (Ch. 8)

Many different problems can be formulated as graph or network
flow models:

» Find the total capacity of a given water pipeline network

» Find a time schedule (starting and completion times) for the
activities in a project

» How much goods should be transported from each supplier to
each point of demand in a transportation system, and which
links should be used to what extent

Lecture 11 Linear and integer optimization with applications

A linear programming formulation: shortest path from node

s€Ntonodete N

» For each arc (/,j) € A, let xj; be the flow on the arc
» Flow balance in each node k € N
» x;j = 1if arc (i,j) is in the shortest path and x;; = 0 otherwise
» Linear programming formulation (assume dj; > 0):
min > djx;,
(iJ)eA
-1, k=s,
s.t. Z Xk — Z Xyj = 1, k=t,
i:(i,k)EA Ji(kj)eA 0, ke N\ {s,t},

xj > 0, (i,j) €A

v

Linear programming dual:
max yi — Vs,

st. yi—yi < dj, (i,j)eA
Vi free, ke N

Lecture 11 Linear and integer optimization with applications

The shortest path problem

» Given: a network of nodes N, (directed) arcs A, and arc
distances djj, (i,j) € A

» Find the shortest path from a source node (s € N) to a
destination node (t € N)

Lecture 11 Linear and integer optimization with applications

Principle of optimality formulated by Bellman's equations

» In a graph with no negative cycles, optimal paths have optimal
subpaths

» A shortest path from node s node to t that passes through
node k contains a shortest path from node s node to k

> Let y; denote the length of the shortest path from node s to

node j
» Bellmans equations:
> }/s g 0

» y; =min{y; + ¢ : arc/edge (i,j) exists } for all j # s
1

CC,'J' @

Lecture 11 Linear and integer optimization with applications

Solution method |: Bellman's equations

» |If the graph is directed without cycles: solve Bellman's

equations in topological order
» Shortest path from node 1 to each of the other nodes

(1,5,2,3,4):
» vy =0
» y5 = min{oo} = min{oo} = 0o
> yo = min{o0; y1 + c12; ¥5 + Cs2} = min{oo; 0+ 5;00} =5
> y3 =min{oo; y1 + c13} = min{0+ 4} = 4
> ya=min{oo; y1 + Cla; Y2 + Coai Y3 + C3a; Y5 + Coa} =

min{oo;0+7;54+3;4+2,00+2} =6

Cij

» y1=0,y2=5y3 =4y, =6, y5 =

Lecture 11 Linear and integer optimization with applications

Solution method II: Dijkstra’s algorithm

» The graph may contain cycles but all edge costs must be
nonnegative (i.e., ¢ > 0)

()

» Solve the example on the board

Lecture 11 Linear and integer optimization with applications

Algorithms for the shortest path problem: Dijkstra (Ch.8.4.2)

» Find the shortest path between node s and node / when all
arcs distances are non-negative
» N = set of all nodes; source node s € N
» d; = distance on link from i to j for all i,j € N
» djj = oo if no direct link from / to j
Step 0: S :={s}, S:=N\{s},and y; :=ds, i€ N
Step 1:
(a) If 5 =10, stop. Else find node j such that y; = min;_z y;
S:=SU{j}and S:=S5\{j}
(b) Forallke Sandi€S:
If Yk > Yi+ dix set Yk = Yi+ dic and pred(k) =

» The vector pred keeps track of the predecessors

» Dijkstra’s algorithm actually finds shortest paths from the
source to all others nodes (this is not formulated in the LP)

Lecture 11 Linear and integer optimization with applications

Example: Dijkstra’s algorithm

Find the shortest path from node 1 to all other nodes (Homework)

Lecture 11 Linear and integer optimization with applications

Negative lengths of edges and negative cycles

> Negative length of edges: extend Dijkstra’s algorithm according
to “move nodes back from S to S” (Ford's algorithm)

» There may be a cycle of negative total length
= “Length” of the shortest path — —co

= Ford’s algorithm either finds a shortest path or detects a cycle
with a negative total length

Lecture 11 Linear and integer optimization with applications

Algorithms for the shortest path problem: Floyd—Warshall

(Ch. 8.4.2)

» Computes shortest paths between each pair of nodes

» Negative distances are allowed; negative cycles are detected
» Idea: Three nodes i, k,j and distances cj, ¢y, and ¢j;

» i — k — jis a short-cut if cj + cxj < ¢jj

» In each iteration 1... k, check whether ¢;; can be improved by
using the short-cut via k

» Administration of the algorithm: Maintain two matrices per
iteration: D[k] for the distances and pred[k] to keep track of
the predecessor of each node

Lecture 11 Linear and integer optimization with applications

Floyd—Warshall's algorithm

Step 0: Initialize D[0] and pred|0]
Step k: » D[k] := D[k — 1], pred[k] := pred[k — 1]
For each element dj; in D[k]:
If dix + dij < djj, set djj := dix + dij and predj;[k] :== k
Set k = k+1
If kK > n stop, else repeat Step k

Find the shortest path from node 3 to all other nodes

Lecture 11 Linear and integer optimization with applications

Example: Most reliable route

» Mr Q drives to work daily

» All road links he can choose for a path to work are patrolled by
the police

» It is possible to assign a probability p;; € [0,1] of not being
stopped by the police on link (7, /)

» Mr Q wants to find the “shortest” (safest?) path in the sense
that the probability of being stopped is as low as possible

» maximize Prob(not being stopped)

0.3

» Ex. 1 — 4: max{pi2p2a; p13p3a} = max{0.2 - 0.35;0.8 - 0.3}
» Note: This version cannot be formulated as a linear program

Lecture 11 Linear and integer optimization with applications

Alternative objectives = Variants of Bellman's equations

» Most reliable path (failure probability p;; € [0, 1] for arc (i,)):
> Vs = 1
» y; = max{y; - pj : arc/edge (i,j) exists } for all j # s

» Highest capacity path (capacity Kj > 0 on arc (i,/)):

> }/s =0
> y; = max { min{y;; Kij} : arc/edge (i,) exists }, j # s

Lecture 11 Linear and integer optimization with applications

