MVE165/MMG631 Linear and integer optimization with applications Lecture 12 Maximum flows and minimum cost flows—models and algorithms

Ann-Brith Strömberg

2014-05-09

- Consider a district heating network with pipelines that transports energy (in the form of hot water) from a number of sources to a number of destinations
- The network has several branches and junctions
- Pipe segment (i, j) has a maximum capacity of K_{ij} units of flow per time unit
- A pipe can be one- or bidirectional
- What is the maximum total amount of flow per time unit through this network?
- Another application of the maximum flow model: evacuation of buildings (also time dynamics)

LP model for maximum flow problems

r

- Let x_{ij} denote the amount of flow through pipe segment (i, j) (flow direction i → j)
- ▶ Let *v* denote the *total flow* from the source to the destination
- Graph: G = (V, A, K) (nodes, directed arcs, arc capacities) (an undirected edge is here represented by two directed arcs)

$$\begin{array}{rcl} \max & & v, \\ \text{s.t.} & & \sum_{j:(s,j)\in A} (-x_{sj}) + v & = & 0, \\ & & \sum_{j:(j,t)\in A} x_{jt} - v & = & 0, \\ & & \sum_{j:(j,t)\in A} x_{ik} + \sum_{j:(k,j)\in A} (-x_{kj}) & = & 0, \\ & & k \in V \setminus \{s,t\} \\ & & x_{ij} & \leq & K_{ij}, \quad (i,j) \in A \\ & & x_{ij} & \geq & 0, \quad (i,j) \in A \end{array}$$

Draw!!

A solution method for maximum flow problems (Edmonds & Karp, 1972)

- 1. Let k := 0, v := 0, $x_{ij}^0 := 0$, and $u_{ij}^0 := K_{ij}$, $(i, j) \in A$.
- Find a maximum capacity path P^k ⊂ A from s to t (modified shortest path algorithm). The capacity of P^k is *û^k* := min {min{u^k_{ij} | (i,j) ∈ P^k}; min{x^k_{ij} | (j,i) ∈ P^k}}.
 If *û^k* = 0, go to step 4.
- 3. Update the flows $x_{ij}^{k+1} := \begin{cases} x_{ij}^k + \hat{u}^k, & \text{if } (i,j) \in P^k, \\ x_{ij}^k \hat{u}^k, & \text{if } (j,i) \in P^k, \\ x_{ij}^k, & \text{otherwise,} \end{cases}$ the capacities $u_{ij}^{k+1} := \begin{cases} u_{ij}^k - \hat{u}^k, & \text{if } (i,j) \in P^k, \\ u_{ij}^k + \hat{u}^k, & \text{if } (j,i) \in P^k, \\ u_{ij}^k, & \text{otherwise,} \end{cases}$ and the total flow $v^{k+1} := v^k + \hat{u}^k$. Let k := k+1, go to step 2. 4. The maximum total flow equals v^k . The flow solution is given by x_{ij}^k , $(i,j) \in A$.

LP dual of the maximum flow model

[Primal] max v. $\sum (-x_{sj}) + v = 0,$ s.t. $i:(s,j)\in A$ $\sum x_{jt} - v = 0,$ $i:(i,t)\in A$ $\sum x_{ik} + \sum (-x_{kj}) = 0, \quad k \in V \setminus \{s,t\}$ $i:(i,k)\in A$ $j:(k,j)\in A$ $0 \leq x_{ii} \leq K_{ii}, (i,j) \in A$ min $\sum K_{ij}\gamma_{ij}$, [Dual] $(i,j) \in A$ s.t. $-\pi_i + \pi_i + \gamma_{ii} \geq 0$, $(i, j) \in A$ $\pi_{s} - \pi_{t} = 1,$ π_k free, $k \in V$, $\gamma_{ii} \geq 0, (i,j) \in A$ Drawll Lecture 12 Linear and integer optimization with applications

Maximum flow - Minimum cut theorem

- An (s, t)-cut is a set of arcs which, when deleted, interrupt all flow in the network between the source s and the sink t
- The cut capacity equals the sum of capacities on all the arcs through the (s, t)-cut
- Finding the minimum (s, t)-cut is equivalent to solving the dual of the maximum flow problem
- ► Weak duality theorem: Each feasible flow x_{ij}, (i, j) ∈ A, yields a lower bound on v*. The capacity of each (s, t)-cut yields an upper bound on v*.
- Strong duality theorem: value of maximum flow = capacity of minimum cut

• Optimal values of the dual variables:

 $\gamma_{ij} = \begin{cases} 1, & \text{if arc } (i,j) \text{ passes through the minimum cut,} \\ 0, & \text{otherwise.} \end{cases}$

$$\pi_k = \begin{cases} 1, & \text{if node } k \text{ can be reached from } s, \\ 0, & \text{otherwise.} \end{cases}$$

How is the minimum cut found using the Edmonds & Karp algorithm?

Transportation models: An example

- MG Auto has three plants, LA, Detroit, New Orleans, and two distribution centers, Denver and Miami
- Capacities of the plants: 1000, 1500, and 1200 cars
- Demands at distributions centers: 2300 and 1400 cars
- Transportation cost per car between plants and centers:

	Denver	Miami
LA	\$80	\$215
Detroit	\$100	\$108
New Orleans	\$102	\$68

Find the cheapest shipping schedule to satisfy the demand

Linear programming formulation of MG Auto

Variables: x_{ij} = number of cars sent from plant i to distribution center j

 $\min z = 80x_{11} + 215x_{12} + 100x_{21} + 108x_{22} + 102x_{31} + 68x_{32}$

 \leq 1000 (LA) s.t. $x_{11} + x_{12}$ \leq 1500 (Detr) $x_{21} + x_{22}$ $x_{31} + x_{32} \leq 1200$ (NO) $+x_{31} \geq 2300$ (Den) $+x_{21}$ *x*₁₁ $+x_{32} > 1400$ (Mi) $+x_{22}$ *x*₁₂ $x_{21}, x_{22}, x_{31}, x_{32} \geq$ 0 x_{11} , $x_{12},$

Definition of the transportation model

- ▶ m sources and n destinations ⇔ nodes
- ▶ a_i = amount of supply at source (node) i, i = 1, ..., m
- ▶ b_j = amount of demand at destination (node) j, j = 1, ..., n
- Arc $(i,j) \Leftrightarrow$ connection from source *i* to destination *j*
- $c_{ij} = \text{cost per unit of flow on arc } (i, j)$
- Variables: x_{ij} = amount of goods shipped on arc (i, j)
- ► Objective: find x_{ij} ≥ 0 such that the total cost is minimized while satisfying all supply and demand restrictions

Linear programming transportation model

$$\min z := \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}$$
s.t.
$$\sum_{\substack{j=1 \ m}}^{n} x_{ij} \leq a_i, \quad i = 1, \dots, m \quad (supply)$$

$$\sum_{\substack{i=1 \ m}}^{m} x_{ij} \geq b_j, \quad j = 1, \dots, n \quad (demand)$$

$$x_{ij} \geq 0, \quad i = 1, \dots, m, \quad j = 1, \dots, n$$

• Feasible solutions exist *if and only if*

$$\sum_i a_i \ge \sum_j b_j$$

► The constraint matrix has special properties (totally unimodular) ⇒ extreme points of the feasible polyhedron are integer (Chapter 8.6.3)

A balanced transportation model

▶ What if total amount of demand ≠ total amount of supply? $(\sum_{i} a_{i} > \sum_{j} b_{j} \text{ (feasible) or } \sum_{i} a_{i} < \sum_{j} b_{j} \text{ (infeasible))}$ $\min z := \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij}x_{ij}$ s.t. $\sum_{j=1}^{n} x_{ij} \leq a_{i}, \quad i = 1, \dots, m$ $\sum_{i=1}^{m} x_{ij} \geq b_{j}, \quad j = 1, \dots, n$ $x_{ij} \geq 0, \quad i = 1, \dots, m, j = 1, \dots, n$

 \Rightarrow Balance the model by dummy source m+1 or destination n+1

• Suppose
$$\sum_{i} a_i > \sum_{j} b_j \Rightarrow \text{Let } b_{n+1} := \sum_{i=1}^{m} a_i - \sum_{j=1}^{n} b_j$$

⇒ Balanced transportation model: equality constraints

$$\begin{array}{rcl} \min z := & \sum_{i=1}^{m} \sum_{j=1}^{n+1} c_{ij} x_{ij} \\ \text{s.t.} & & \sum_{j=1}^{n+1} x_{ij} &= a_i, \quad i = 1, \dots, m \\ & & \sum_{i=1}^{m} x_{ij} &= b_j, \quad j = 1, \dots, n+1 \\ & & x_{ij} &\geq 0, \quad i = 1, \dots, m, j = 1, \dots, n+1 \end{array}$$

General minimum cost network flow problems

- ► A network consist of a set *N* of *nodes* linked by a set *A* of *arcs*
- ► A distance/cost c_{ij} is associated with each arc
- Each node *i* in the network has a net demand *d_i*
- ▶ Each arc carries an (unknown) amount of flow x_{ij} that is restricted by a maximum capacity $u_{ij} \in [0, \infty]$ and a minimum capacity $\ell_{ij} \in [0, u_{ij}]$
- The flow through each node must be balanced
- A network flow problem can be formulated as a linear program
- All extreme points of the feasible set are *integral* due to the unimodularity property of the constraint matrix (see Ch. 8.6.3)

Minimum cost flow in a general network: Example

- Two paper mills: Holmsund and Tuna
- Three saw mills: Silje, Graninge and Lunden
- Two storage terminals: Norrstig and Mellansel

Facility	Supply (m ³)	Demand (m ³)
Silje	2400	
Graninge	1800	
Lunden	1400	
Holmsund		3500
Tuna		2100

Transportation opportunities:

From	То	Price/m ³	Capacity (m ³)
Silje	Norrstig	20	900
Silje	Mellansel	26	1000
Silje	Holmsund	45	1100
Graninge	Norrstig	8	700
Graninge	Mellansel	14	900
Graninge	Holmsund	37	600
Graninge	Tuna	22	600
Lunden	Mellansel	32	600
Lunden	Tuna	23	1000
Norrstig	Holmsund	11	1800
Norrstig	Mellansel	9	1800
Mellansel	Norrstig	9	1800
Mellansel	Tuna	9	1800

Minimum cost flow in a general network: Example

- Objective: Minimize transportation costs
- Satisfy demand
- Do not exceed the supply
- Do not exceed the transportation capacities
- An optimal solution

Minimum cost flow in a general network: Example

► The columns A_j of the equality constraint matrix (Ax = b) have one 1-element, one -1-element; the remaining elements are 0 ⇒ the matrix A is totally unimodular

- G = (N, A) is a network with nodes N and arcs A, |N| = n
- x_{ij} is the amount of flow on the arc from node *i* to node *j*,
- ▶ l_{ij} and u_{ij} are lower and upper limits for the flow on arc (i, j),
- c_{ij} is the cost per unit of flow on arc (i, j), and
- ► *d_i* is the demand in node *i*

min
s.t.
$$\sum_{i:(i,k)\in A} x_{ik} - \sum_{\substack{(i,j)\in A\\ j:(k,j)\in A}} x_{kj} = d_k, \quad k \in N,$$

$$\ell_{ij} \leq x_{ij} \leq u_{ij}, \quad (i,j) \in A.$$

The linear optimization model:

Linear programming dual:

$$\begin{array}{lll} \max & \sum\limits_{k \in N} d_k y_k + \sum\limits_{(i,j) \in A} \left(\ell_{ij} \alpha_{ij} - u_{ij} \beta_{ij} \right), \\ \text{s.t.} & y_j - y_i + \alpha_{ij} - \beta_{ij} &= c_{ij}, \quad (i,j) \in A, \\ & \alpha_{ij}, \beta_{ij} &\geq 0, \quad (i,j) \in A. \end{array}$$

The simplex method for minimum cost network flows (Ch. 8.7)

- A solution is optimal if
 - the primal and dual solutions are feasible and
 - the complementary conditions are fulfilled
- Reduced cost: $\overline{c}_{ij} = c_{ij} + y_i y_j$
- Complementary conditions, $(i, j) \in A$

$$\alpha_{ij}(x_{ij} - \ell_{ij}) = 0$$

$$\beta_{ij}(u_{ij}-x_{ij})=0$$

•
$$x_{ij}(\overline{c}_{ij} - \alpha_{ij} + \beta_{ij}) = 0$$

- Assume that $\ell_{ij} < u_{ij}$.
- A feasible solution x_{ij}, (i, j) ∈ A, is optimal if the following hold:

•
$$x_{ij} = u_{ij} \Rightarrow \alpha_{ij} = 0 \Rightarrow \text{Reduced cost: } \overline{c}_{ij} = -\beta_{ij} \leq 0$$

• $x_{ij} = \ell_{ij} \Rightarrow \beta_{ij} = 0 \Rightarrow \text{Reduced cost: } \overline{c}_{ij} = \alpha_{ij} \ge 0$

•
$$\ell_{ij} < x_{ij} < u_{ij} \Rightarrow \alpha_{ij} = \beta_{ij} = 0 \Rightarrow \text{Reduced cost: } \overline{c}_{ij} = 0$$

The simplex method for minimum cost network flows

- The arc (i,j) corresponds to the variable x_{ij} , $(i,j) \in A$
- A basic solution is characterized by the following;
 - If $\ell_{ij} < x_{ij} < u_{ij} \Rightarrow$ the arc (i, j) is in the *basis* $\Leftrightarrow x_{ij}$ is a basic variable
 - If $x_{ij} = \ell_{ij}$ or $x_{ij} = u_{ij} \Rightarrow$ the arc (i, j) may be in the basis $\Leftrightarrow x_{ij}$ may be a basic variable
 - ► There are exactly n − 1 basic arcs which form a spanning tree in G (one primal equation is a linear combination of the rest and can thus be removed)

The simplex method for minimum cost flows

- 1. Find a feasible solution (a spanning tree of basic arcs)
- 2. Compute reduced costs $\overline{c}_{ij} = c_{ij} + y_i y_j$ for all non-basic arcs
- 3. Check termination criteria: If, for every arc (i, j),
 - either: $\overline{c}_{ij} = 0$ and $\ell_{ij} \leq x_{ij} \leq u_{ij}$,
 - or: $\overline{c}_{ij} < 0$ and $x_{ij} = u_{ij}$,
 - or: $\overline{c}_{ij} > 0$ and $x_{ij} = \ell_{ij}$

hold, then STOP. x_{ij} , $(i, j) \in A$ forms an optimal solution

- Entering variable (arc): (p, q) ∈ arg max_{(i,j)∈I} |c_{ij}|
 I = the set of non-basic arcs not fulfilling the conditions in 3.
- 5. Leaving variable (arc): Send flow along the cycle defined by the current basis (spanning tree) and the arc (p, q). The arc (i, j) whose flow x_{ij} first reaches u_{ij} or ℓ_{ij} leaves the basis.
- 6. Go to step 2

The assignment model

- A special case of the network flow model (and of the transportation model)
- Given *n* persons and *n* jobs
- ▶ Given further the cost *c*_{*ij*} of assigning person *i* to job *j*
- Binary variables x_{ij} = 1 if person i does job j and x_{ij} = 0 otherwise
- Find the cheapest assignment of persons to jobs such that all jobs are done

$$\begin{array}{rll} \min & \sum_{ij} c_{ij} x_{ij} \\ \text{s.t.} & \sum_{j} x_{ij} &= 1 \quad \forall i \\ & \sum_{i} x_{ij} &= 1 \quad \forall j \\ & x_{ij} &\geq 0 \quad \forall i, \end{array}$$

 The optimal solution is binary (due to the totally unimodular constraint matrix)

An assignment example

- 3 children: John, Karin and Tina
- ▶ 3 tasks: mow, paint and wash.
- Given further a "cost" (time, uncomfort,...) for each combination of child/task
- How should the parents distribute the tasks to minimize the cost?

	Mow	Paint	Wash
John	15	10	9
Karin	9	15	10
Tina	10	12	8

Choose exactly one element in each row and one in each column