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Areas of applications, examples (Ch. 9.1)

◮ Structural optimization
◮ Design of aircraft, ships, bridges, etc
◮ Decide on the material and the thickness of a mechanical

structure
◮ Minimize weight, maximize stiffness, constraints on

deformation at certain loads, strength, etc
◮ Analysis and design of traffic networks

◮ Estimate traffic flows and discharges
◮ Detect bottlenecks
◮ Analyze effects of traffic signals, tolls, etc

◮ Least squares—adaptation of data

◮ Engine development, design of antennas, ...

for each function evaluation a simulation may be needed
◮ Maximize the volume of a cylinder

while keeping the surface area constant
◮ Wind power generation: The energy content in

the wind ∝ v3 (but Ass3b uses discretized measured data)
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An overview of nonlinear optimization

General notation for nonlinear programs

minimize x∈ℜn f (x)

subject to gi (x) ≤ 0, i ∈ L,

hi (x) = 0, i ∈ E .

Some special cases

◮ Unconstrained problems ( L = E = ∅):

minimize f (x) subject to x ∈ ℜn

◮ Convex programming: f convex, gi convex, i ∈ L,
hi linear, i ∈ E .

◮ Linear constraints: gi , i ∈ L, and hi , i ∈ E

◮ Quadratic programming: f (x) = cTx+ 1
2x

TQx

◮ Linear programming: f (x) = cTx
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Properties of nonlinear programs

◮ The mathematical properties of nonlinear optimization
problems can be very different

◮ No algorithm exists that solves all nonlinear optimization
problems

◮ An optimal solution does not have to be located at an
extreme point

◮ Nonlinear programs can be unconstrained (what if a linear

program has no constraints?)

◮ f may be differentiable or non-differentiable (e.g., the
Lagrangean dual objective function; Ass3a)

◮ For convex problems: Algorithms converge to an optimal
solution

◮ Nonlinear problems can have local optima that are not global

optima
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Possible extremal points for

minimize f (x) subject to x ∈ S

x

f (x)

1 2 3 4 5 6 7S

◮ boundary points of S

◮ stationary points, where f ′(x) = 0

◮ discontinuities in f or f ′ Draw!
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Boundary and stationary points (Ch. 10.0)

◮ x is a boundary point to the feasible set

S = {x ∈ ℜn | gi (x) ≤ 0, i ∈ L}

if gi (x) ≤ 0, i ∈ L, and gi (x) = 0 for at least one index i∈ L

◮ x is a stationary point to f if ∇f (x) = 0

(in one dimension: if f ′(x) = 0)
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Local and global minima (maxima) (Ch. 2.4)

minimize f (x) subject to x ∈ S

◮ x is a local minimum if x ∈ S and f (x) ≤ f (x) for all x ∈ S
sufficiently close to x

◮ In words: A solution is a local minimum if it is feasible and no
other feasible solution in a sufficiently small neighbourhood

has a lower objective value

◮ Formally: ∃ε > 0 such that f (x) ≤ f (x) for all
x ∈ S ∩ {x ∈ ℜn : ‖x− x‖ ≤ ε}

◮ Draw!!

◮ x is a global minimum if x ∈ S and f (x) ≤ f (x) for all x ∈ S

◮ In words: A solution is a global minimum if it is feasible and no
other feasible solution has a lower objective value
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When is a local optimum also a global optimum? (Ch. 9.3)

◮ The concept of convexity is essential

◮ Functions: convex (minimization), concave (maximization)

◮ Sets: convex (minimization and maximization)

◮ The minimization (maximization) of a convex (concave)
function over a convex set is referred to as a convex
optimization problem

◮ (Def. 9.5) If f and gi , i ∈ L, are convex functions, then
[ minimize f (x) subject to gi (x) ≤ 0, i ∈ L ]

is said to be a convex optimization problem

◮ (Thm. 9.1) Let x∗ be a local optimum for a convex
optimization problem. Then x∗ is also a global optimum
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Convex functions

◮ A function f is convex on S if, for any x, y ∈ S it holds that

f (αx+ (1− α)y) ≤ αf (x) + (1− α)f (y) for all 0 ≤ α ≤ 1

x xy yαx + (1 − α)y αx + (1 − α)y

f (x)
f (x)

f (y)

f (y)

αf (x) + (1 − α)f (y)

αf (x) + (1 − α)f (y)

f(αx + (1 − α)y)

f(αx + (1 − α)y)

A convex function A non-convex function

◮ f is strictly convex on S if, for any x, y ∈ S such that x 6= y it
holds that

f (αx+ (1− α)y) < αf (x) + (1− α)f (y) for all 0 < α < 1
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Convex sets

◮ A set S is convex if, for any elements x, y ∈ S it holds that

αx+ (1− α)y ∈ S for all 0 ≤ α ≤ 1

◮ Examples:

x

x
y

y

Convex sets Non-convex sets

◮ Consider a set S defined by the intersection of m = |L|
inequalities, where the functions gi : ℜ

n 7→ ℜ, i ∈ L:

S = { x ∈ ℜn | gi (x) ≤ 0, i ∈ L }

◮ (Thms. 9.2 & 9.3) If all the functions gi (x) i ∈ L, are convex
on ℜn, then S is a convex set
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The Karush-Kuhn-Tucker conditions: necessary conditions

for optimality

◮ Define S = { x ∈ ℜn | gi (x) ≤ 0, i ∈ L }

◮ Assume that the functions gi : ℜ
n 7→ ℜ, i ∈ L, are convex and

differentiable and that there exists a point x ∈ S such that
gi (x) < 0, i ∈ L.

◮ Further, assume that f : ℜn 7→ ℜ is differentiable.

◮ If x∗ ∈ S is a local minimum of f over S , then there exists a
vector µ ∈ ℜm (where m = |L|) such that

∇f (x∗) +
∑

i∈L

µi∇gi(x
∗) = 0n

µigi (x
∗) = 0, i ∈ L

gi (x
∗) ≤ 0, i ∈ L

µ ≥ 0m
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Geometry of the Karush-Kuhn-Tucker conditions

x)∆

1g =0

3g =0

(x)f∆−

g1(x)∆

2g =0

x

g2(

S

Figur: Geometric interpretation of the Karush-Kuhn-Tucker conditions.
At a local minimum, the negative gradient of the objective can be
expressed as a non-negative linear combination of the gradients of the
active constraints at this point.
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The Karush-Kuhn-Tucker conditions: sufficient for

optimality under convexity

◮ Assume that the functions f , gi : ℜ
n 7→ ℜ, i ∈ L, are convex

and differentiable.
◮ If the conditions (where m = |L|)

∇f (x∗) +
∑

i∈L

µi∇gi(x
∗) = 0n

µigi (x
∗) = 0, i ∈ L

µ ≥ 0m

hold, then x∗ ∈ S is a global minimum of f over
S = { x ∈ ℜn | gi (x) ≤ 0, i ∈ L }.

◮ The Karush-Kuhn-Tucker conditions can also be stated for
optimization problems with equality constraints

◮ For unconstrained optimization KKT reads: ∇f (x∗) = 0
◮ For a quadratic program KKT forms a system of linear

(in)equalities plus the complementarity constraints
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The optimality conditions can be used to..

◮ verify an (local) optimal solution

◮ solve certain special cases of nonlinear programs (e.g.
quadratic programs)

◮ algorithm construction

◮ derive properties of a solution to a non-linear program
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Example

minimize f (x) := 2x21 + 2x1x2 + x22 − 10x1 − 10x2
subject to x21 + x22 ≤ 5

3x1 + x2 ≤ 6

◮ Is x0 = (1, 2)T a Karush-Kuhn-Tucker point?

◮ Is it an optimal solution?

◮ ∇f (x) = (4x1 + 2x2 − 10, 2x1 + 2x2 − 10)T,

∇g1(x) = (2x1, 2x2)
T, ∇g2(x) = (3, 1)T

⇒








4x01 + 2x02 − 10 + 2x01µ1 + 3µ2 = 0
2x01 + 2x02 − 10 + 2x02µ1 + µ2 = 0

µ1((x
0
1 )

2 + (x02 )
2 − 5) = µ2(3x

0
1 + x02 − 6) = 0

µ1, µ2 ≥ 0









⇔









2µ1 + 3µ2 = 2
4µ1 + µ2 = 4

0µ1 = −µ2 = 0
µ1, µ2 ≥ 0









⇒ µ2 = 0 ⇒ µ1 = 1 ≥ 0
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Example, continued

◮ The Karush-Kuhn-Tucker conditions hold

◮ Is the solution optimal? Check convexity!

◮ ∇2f (x) =

(

4 2
2 2

)

, ∇2g1(x) =

(

2 0
0 2

)

, ∇2g2(x) = 02×2

⇒ f , g1, and g2 are convex

⇒ x0 = (1, 2)T is an optimal solution and f (x0) = −20
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General iterative search method for unconstrained

optimization (Ch. 2.5.1)

1. Choose a starting solution, x0 ∈ ℜn. Let k = 0

2. Determine a search direction dk

3. If a termination criterion is fulfilled ⇒ Stop!

4. Determine a step length, tk , by solving:

minimize t≥0ϕ(t) := f (xk + t · dk)

5. New iteration point, xk+1 = xk + tk · d
k

6. Let k := k + 1 and return to step 2

How choose search directions dk , step lengths tk , and termination

criteria?
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Improving search directions (Ch. 10)

◮ Goal: f (xk+1) < f (xk) (minimization)

◮ How does f change locally in a direction dk at xk?

◮ Taylor expansion (Ch. 9.2):
f (xk + tdk) = f (xk) + t∇f (xk)Tdk +O(t2)

◮ For sufficiently small t > 0:
f (xk + tdk) < f (xk) ⇒ ∇f (xk)Tdk < 0

⇒ Definition:

If ∇f (xk)Tdk < 0 then dk is a descent direction for f at xk

If ∇f (xk)Tdk > 0 then dk is an ascent direction for f at xk

◮ We wish to minimize (maximize) f over ℜn:

⇒ Choose dk as a descent (an ascent) direction from xk
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An improving step
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Figur: At xk , the descent direction dk is generated. A step tk is taken in
this direction, producing xk+1. At this point, a new descent direction
dk+1 is generated, and so on.
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General iterative search method for unconstrained

optimization (Ch. 2.5.1)

1. Choose a starting solution, x0 ∈ ℜn. Let k = 0

2. Determine a search direction dk

3. If a termination criterion is fulfilled ⇒ Stop!

4. Determine a step length, tk , by solving:

minimize t≥0ϕ(t) := f (xk + t · dk)

5. New iteration point, xk+1 = xk + tk · d
k

6. Let k := k + 1 and return to step 2
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Step length—line search (minimization) (Ch. 10.4)

◮ Solve mint≥0 ϕ(t) := f (xk + t · dk) where dk is a descent
direction from xk

◮ A minimization problem in one variable ⇒ Solution tk

◮ Analytic solution: ϕ′(tk) = 0 (seldom possible to derive)

◮ Numerical solution methods:
◮ The golden section method (reduce the interval of uncertainty)
◮ The bi-section method (reduce the interval of uncertainty)
◮ Newton-Raphson’s method
◮ Armijo’s method

◮ In practice: Do not solve exactly, but to a sufficient
improvement of the function value:
f (xk + tkd

k) ≤ f (xk)− ε for some ε > 0

Lecture 13 Linear and integer optimization with applications



Line search
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Figur: A line search in a descent direction.
tk solves mint≥0 ϕ(t) := f (xk + t · dk)
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General iterative search method for unconstrained

optimization

1. Choose a starting solution, x0 ∈ ℜn. Let k = 0

2. Determine a search direction dk

3. If a termination criterion is fulfilled ⇒ Stop!

4. Determine a step length, tk , by solving:

minimize t≥0ϕ(t) := f (xk + t · dk)

5. New iteration point, xk+1 = xk + tk · d
k

6. Let k := k + 1 and return to step 2
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Termination criteria

◮ Needed since ∇f (xk) = 0 will never be fulfilled exactly

◮ Typical choices (εj > 0, j = 1, . . . , 4)

(a) ‖∇f (xk)‖ < ε1

(b) |f (xk+1)− f (xk)| < ε2

(c) ‖xk+1 − xk‖ < ε3

(d) tk < ε4

These are often combined

◮ The search method only guarantees a stationary solution,
whose properties are determined by the properties of f
(convexity, ...)
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Constrained optimization: Penalty methods

◮ Consider both inequality and equality constraints:

minimize x∈ℜn f (x)

subject to gi (x) ≤ 0, i ∈ L, (1)

hi (x) = 0, i ∈ E .

◮ Drop the constraints and add terms in the objective that
penalize infeasibile solutions

minimizex∈ℜn Fµ(x) := f (x) + µ
∑

i∈L∪E

αi (x) (2)

where µ > 0 and αi (x) =

{

= 0 if x satisfies constraint i
> 0 otherwise

◮ Common penalty functions (which are differentiable?):
i ∈ L: αi (x) = max{0, gi(x)} or αi (x) = (max{0, gi(x)})2

i ∈ E : αi (x) = |hi (x)| or αi(x) = |hi (x)|2
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Squared and non-squared penalty functions

minimize
(

x2 − 20 ln x
)

subject to x ≥ 5
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x2 − 20 ln x
x2−20 ln x+max{0, 5−x}
x2−20 ln x+(max{0, 5−x})2

Figur: Squared and non-squared penalty function. gi differentiable =⇒
squared penalty function differentiable
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Squared penalty functions

◮ In practice: Start with a low value of µ > 0 and increase the
value as the computations proceed

◮ Example: minimize (x2 − 20 ln x) subject to x ≥ 5 (∗)

⇒ minimize
(

x2 − 20 ln x + µ(max{0, 5 − x})2
)

(∗∗)
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x2 − 20 ln x

Figur: Squared penalty function: 6 ∃µ < ∞ such that an optimal solution
for (∗∗) is optimal (feasible) for (∗)
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Non-squared penalty functions

◮ In practice: Start with a low value of µ > 0 and increase the
value as the computations proceed

◮ Example: minimize
(

x2 − 20 ln x
)

subject to x ≥ 5 (+)

⇒ minimize
(

x2 − 20 ln x + µmax{0, 5 − x}
)

(++)
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x2 − 20 ln x

Figur: Non-squared penalty function: For µ ≥ 6 the optimal solution for
(++) is optimal (and feasible) for (+)
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Constrained optimization: Barrier methods

◮ Consider only inequality constraints:

minimize x∈ℜn f (x)

subject to gi (x) ≤ 0, i ∈ L. (3)

◮ Drop the constraints and add terms in the objective that
prevents from approaching the boundary of the feasible set

minimizex∈ℜn Fµ(x) := f (x) + µ
∑

i∈L

αi (x) (4)

where µ > 0 and αi (x) → +∞ as gi (x) → 0 (as constraint i
approaches being active)

◮ Common barrier functions:
◮ αi (x) = − ln[−gi(x)] or αi (x) =

−1
gi (x)
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Logarithmic barrier functions

◮ Choose µ > 0 and decrease it as the computations proceed

◮ Example: minimize
(

x2 − 20 ln x
)

subject to x ≥ 5

⇒ minimize x>5

(

x2 − 20 ln x − µ ln(x − 5)
)
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Figur: Logarithmic barrier function: µ ∈ {10, 5, 2.5, 1.25, 0.625, 0.3125}Lecture 13 Linear and integer optimization with applications



Fractional barrier functions

◮ Choose µ > 0 and decrease it as the computations proceed

◮ Example: minimize
(

x2 − 20 ln x
)

subject to x ≥ 5

⇒ minimize x>5

(

x2 − 20 ln x + µ

x−5

)
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Figur: Fractional barrier function: µ ∈ {10, 5, 2.5, 1.25, 0.625}Lecture 13 Linear and integer optimization with applications


