MVE165/MMG631 Linear and Integer Optimization with Applications Lecture 2 AMPL and CPLEX, Assignment 1

Zuzana Šabartová

2014-03-21

Overview

3 Simple problem

4 Assignment 1

- 4 回 2 - 4 三 2 - 4 三 2

AMPL

- Algebraic modeling language for linear and nonlinear optimization problems
- Formulate optimization models and examine solutions
- Manage communication with an appropriate solver
- Natural syntax
- Separation of model and data
- Discrete or continuous variables
- Support for sets and set operators
- Built in arithmetic functions
- Looping, if-then-else commands

向下 イヨト イヨト

Solvers that work with AMPL

- **CPLEX** linear and quadratic problems in continuous and integer variables
- Gurobi linear and quadratic problems in continuous and integer variables
- CONOPT nonlinear problems
- MINOS linear and nonlinear problems
- CONDOR, Gecode, IPOPT, MINLP, SNOPT ...

(4) (2) (4) (2) (4)

Overview

3 Simple problem

4 Assignment 1

5 References

- 4 回 2 - 4 三 2 - 4 三 2

CPLEX

- Optimization software package for solving linear and quadratic problems in continuous and integer variables
- Originally based on simplex method implemented in C
- Primal and dual simplex method
- Barrier method
- Techniques to avoid degeneracy
- Cutting planes
- Branch & Bound algorithm
- Heuristics ...

Overview

2 CPLEX

3 Simple problem

4 Assignment 1

5 References

The Diet Problem - description

- G. B. Dantzig, 1990
- Choose prepared foods to meet certain nutritional requirements in the cheapest way
- Precooked foods (beef, chicken, fish) are available in given quantity and for given price
- Each food provide given percentage of daily requirements of nutrients (A, C, B1, B2)

	Price [\$]	Av. [pcs]	A [%]	C [%]	B1 [%]	B2 [%]
Beef	3.19	22	60	20	10	15
Chicken	2.59	48	8	0	20	20
Fish	2.29	45	8	10	15	10

• Demand: meet week's requirements, 700 % of daily requirements for each nutrient

向下 イヨト イヨト

イロト イヨト イヨト イヨト

Sets:

- I = 1, 2, 3 set of kinds of food
- J = 1, 2, 3, 4 set of nutrients

イロン イヨン イヨン イヨン

3

Sets:

- I = 1, 2, 3 set of kinds of food
- J = 1, 2, 3, 4 set of nutrients

Variables:

• x_i , i = 1, ..., 3 - purchased amount of food i [pcs]

イロン イ部ン イヨン イヨン 三日

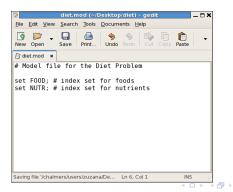
Sets:

- I = 1, 2, 3 set of kinds of food
- J = 1, 2, 3, 4 set of nutrients
- Variables:
 - x_i , i = 1, ..., 3 purchased amount of food i [pcs]
- Parameters:
 - c_i, i = 1,...,3 cost of one piece of food i [\$]
 a_i, i = 1,...,3 available amount of food i [pcs]
 p_{ij}, i = 1,...,3, j = 1,...,4 percentage of daily requirement of nutrient j in food i [%]
 - d requirement for nutrients [%]

- 4 回 ト 4 ヨ ト - 4 ヨ ト

min
$$\sum_{i=1}^{3} c_i x_i$$

s.t.
$$\sum_{i=1}^{3} p_{ij} x_i \ge d_j, \quad j = 1, \dots, 4$$
$$x_i \le a_i, \quad i = 1, \dots, 3$$
$$x_i \ge 0, \quad i = 1, \dots, 3$$


・ロ・ ・ 日・ ・ 日・ ・ 日・

- Create folder diet
- Create model file diet.mod
- Create data file *diet.dat*
- Create run file diet.run

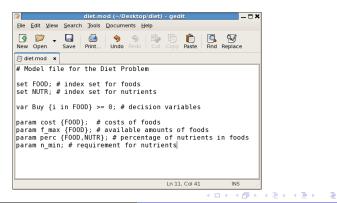
			di	et	<u> </u>
<u>F</u> ile	<u>E</u> dit	<u>V</u> iew	<u>P</u> laces	<u>H</u> elp	
	di	et.dat		diet.mod	
diet.run					
🃁 di	et 🔻 🗄	3 items	, Free sp	ace: 26.1 GB	

4 B K 4 B K

- Fill the model file using text editor (Emacs, gedit, ...)
- Introduce index sets: set
- Comments start with #, each command ends with ;
- Sets:
 - *I* = 1, 2, 3
 - J = 1, 2, 3, 4

3

• E • • E •


- Introduce variables: var
- Formulate non-negativity requirements
- Variables:
 - $x_i, i = 1, ..., 3$
 - $x_i \ge 0, \ i = 1, \dots, 3$

diet.mod (~/Desktop/diet) - gedit 🗕 🗖 🗙
<u>File Edit View Search Tools Documents Help</u>
New Open Save Print Solar Corp. Paste -
🗇 diet.mod 🗙
Model file for the Diet Problem
set FOOD; # index set for foods set NUTR; # index set for nutrients
var Buy {i in FOOD} >= 0; # decision variables
Saving file '/chalmers/users/zuzana/De Ln 6, Col 47 INS

- - E + - E +

3

- Introduce parameters: param
- Parameters:
 - $c_i, i = 1, ..., 3$
 - $a_i, i = 1, ..., 3$
 - $p_{ij}, i = 1, \dots, 3, j = 1, \dots, 4$
 - d

- Formulate objective function: minimize, maximize
- Use built-in arithmetic functions: + , , * , ^ , / , sum, prod, abs, log, sin ...
- min $\sum_{i=1}^{3} c_i x_i$

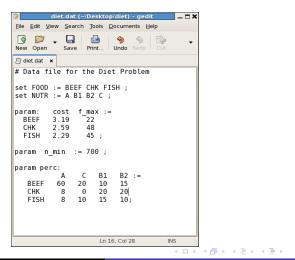
diet.mod (~/Desktop/diet) - gedit	_ 🗆 🗙
<u>File Edit View Search Tools D</u> ocuments <u>H</u> elp	
New Open - Save Print 9 Sub Cut Copy Paste Find Replace	
🗇 diet.mod 🗙	
<pre>set FOOD; # index set for foods set NUTR; # index set for nutrients var Buy {i in FOOD} >= 0; # decision variables param cost {FOOD}; # costs of foods param f_max {FOOD}; # available amounts of foods param perc {FOOD,NUTR}; # percentage of nutrients in foor param n_min; # requirement for nutrients minimize Total_Cost: sum{i in FOOD} cost[i] * Buy[i];</pre>	ds =
Ln 14, Col 1 INS	

白 と く ヨ と く ヨ と

- Formulate constraints: subject to
- Use arithmetic relations: > , >= , < , <= , == , ! = ...

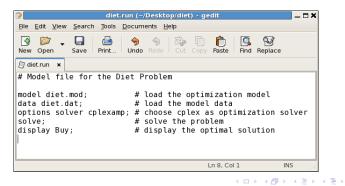
•
$$\sum_{i=1}^{3} p_{ij} x_i \ge d_j, \ j = 1, \dots, 4$$

• $x_i \leq a_i, i = 1, \dots, 3$


😰 diet.mod (~/Desktop/diet) - gedit 📃 🗕	□×
Ele Edit View Search Tools Documents Help	
Image: Save Image: Save	
🗊 diet.mod 🗙	
<pre>param fmax {FOOD; # available amounts of foods param perc {FOOD,NUTR}; # percentage of nutrients in foods param n_min; # requirement for nutrients minimize Total_Cost: sum{i in FOOD} cost[i] * Buy[i]; subject to Diet {j in NUTR}:</pre>	
<pre>sum {i in FOOD} perc[i,j] * Buy[i] >= n_min;</pre>	
subject to Food_Max {i in FOOD}: Buy[i] <= f_max[i];	=
	~
Ln 19, Col 21 INS	

· < @ > < 문 > < 문 > · · 문

AMPL CPLEX Simple problem Assignment 1 References

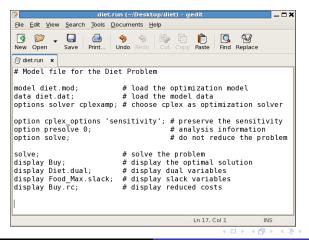

The Diet Problem - AMPL implementation

- Fill the data file using text editor
- Assign values to introduced sets and parameters

3

- Fill the run file using text editor
- Load the model and data: model, data
- Choose solver: options solver
- Solve the problem: *solve*
- Display results: display

- Open Terminal
- Go to the folder diet
- Evaluate commands in run file diet.run by AMPL


	Z	uzana	@math-pc23:~/Desktop/diet	<u> </u>
<u>F</u> ile	<u>E</u> dit	<u>V</u> iew	<u>T</u> erminal Ta <u>b</u> s <u>H</u> elp	
[zuz [zuz	ana@m ana@m	ath-po ath-po	c23 ~]\$ cd Desktop/diet/ c23 diet]\$ ampl diet.run;[]	►

白 ト イヨ ト イヨト

zuzana@math-pc23:~/Desktop/diet	_ — X
<u>F</u> ile <u>E</u> dit <u>V</u> iew <u>T</u> erminal Ta <u>b</u> s <u>H</u> elp	
<pre>[zuzana@math-pc23 ~]\$ cd Desktop/diet/ [zuzana@math-pc23 diet]\$ ampl diet.run; IBM ILOG License Manager: "university-goteborg" is accessing AMPL IBM ILOG AMPL 12.1.0 (5724-Y45) AMPL Version 20090327 (Linux 2.6.1 IBM ILOG License Manager: "university-goteborg" is accessing CPLEX n(s): "b e m q use=10 ". CPLEX 12.1.0: optimal solution; objective 143.965 4 dual simplex iterations (0 in phase I) Buy [*] := BEEF 22 CHK 5.5 FISH 26</pre>	-6-amd64)
, [zuzana@math-pc23 diet]\$ [_

イロト イヨト イヨト イヨト

- Perform sensitivity analysis
- Preserve the sensitivity analysis information
- Use suffices for sensitivity analysis: .rc, .slack, .dual, ...

AMPL CPLEX Simple problem Assignment 1 References

The Diet Problem - AMPL implementation

- Change type of variables: integer, binary, ...
- Sensitivity analysis as described is possible for linear programs in continuous variables

📝 diet.mod (~/Desktop/diet) - gedit	_ 🗆 🗙			
<u>F</u> ile <u>E</u> dit <u>V</u> iew <u>S</u> earch <u>T</u> ools <u>D</u> ocuments <u>H</u> elp				
New Open - Save Print 9 9 Cut Copy Paste Find Replace	e			
🗇 diet.mod 🗙				
# Model file for the Diet Problem	<u>_</u>			
set FOOD; # index set for foods set NUTR; # index set for nutrients var Buy {i in FOOD} integer >= 0; # decision variables				
<pre>param cost {FO0D}; # costs of foods param f_max {F00D}; # available amounts of foods param perc {F00D,NUTR}; # percentage of nutrients in foods param n_min; # requirement for nutrients</pre>				
<pre>minimize Total_Cost: sum{i in FOOD} cost[i] * Buy[i];</pre>				
<pre>subject to Diet {j in NUTR}: sum {i in FOOD} perc[i,j] * Buy[i] >= n_min;</pre>				
subiect to Food Max {i in FOOD}:	•			
Ln 6, Col 29 INS	ali			

zuzana@math-pc23;~/Desktop/diet	_ 🗆 🗙
<u>F</u> ile <u>E</u> dit <u>V</u> iew <u>T</u> erminal Ta <u>b</u> s <u>H</u> elp	
[zuzana@math-pc23 ~]\$ cd Desktop/diet/ [zuzana@math-pc23 diet]\$ ampl diet.run; IBM ILOG License Manager: "university-goteborg" is accessing AMPL 12.	<u></u>
IBM ILOG AMPL 12.1.0 (5724-Y45) AMPL Version 20090327 (Linux 2.6.18-6-amd64) IBM ILOG License Manager: "university-goteborg" is accessing CPLEX 12 with optic n(s): "b e m q use=10 ".	o I
CPLEX 12.1.0: optimal integer solution; objective 144.96 2 MIP simplex iterations 0 branch-and-bound nodes	
Build integer rounding cut Buy [*] :=	=
BEEF 22 CHK 5 FISH 27	
;	
[zuzana@math-pc23 diet]\$ [~

- 4 回 2 - 4 □ 2 - 4 □

Student representatives

Randomly selected course representatives that will evaluate the course:

- Jessica Fredby
- Jonas Jagers
- Johan Karlsson
- Joacim Linder
- Alexander Lyckell

Overview

3 Simple problem

4 Assignment 1

5 References

Biofuels supply chain

- Reduce oil dependence
- Reduce greenhouse effect and climate change
- Substitute fuel in transportation sector
- Biofuels can be used in existing cars
- EU quotas to use 10 % of energy from renewable sources in transportation by 2020, to use 5 % of biodiesel in diesel fuel from 2003
- Food versus fuel debate
- Need to develop a mathematical model of the biofuels supply chain

A B K A B K

Biofuels supply chain

The value chain typically includes:

- Feedstock production
- Biofuel production
- Blending
- Distribution
- Consumption

Assignment 1: Biodiesel supply chain

- Biodiesel supply chain problem
- Maximize the total profit
- Supply the demand of biodiesel
- Tasks:
 - Formulate linear optimization model
 - Model and solve the problem using AMPL and CPLEX
 - Perform sensitivity analysis

A B K A B K

Crops

Data:

- Available area
- Soya, Sunflower, Cotton
- Each crop yields expected amount of seeds
- Each crop has water demand
- Available water
- Processes
 - Extraction of vegetable oils from seeds (given yields)
 - Transesterification: vegetable oil + methanol = biodiesel (given proportions)
 - Purchase methanol (given price)

向下 イヨト イヨト

Final Products

Data:

- B5, B30, B100
- Each product has price
- Each product has tax (higher amount of biodiesel \Rightarrow lower tax)
- Demand of fuels to be delivered
- Processes
 - Blending of biodiesel and petrol diesel
 - Purchase petrol diesel (given price and availability)

4 B K 4 B K

Sensitivity analysis

- Analyze results and answer several important questions without changing the model.
- How sensitive is the optimal solution to changes in data values?
 - *Reduced costs* of a non-basic variables: the change in the objective value when the value of the corresponding variable is (marginally) increased
 - Shadow price of a constraint: the change in the optimal value if you change (marginally) the RHS, it equals to the optimal value of the corresponding dual variable
 - *Slack variables* of a constraint: indicate how much the RHS can be reduced while staying feasible
- Use these tools to answer the questions

・ 同 ト ・ ヨ ト ・ ヨ ト

Cetane number

- Quality of pure biodiesel is given by cetane number
- Quality of petrol diesel is given by octane number
- Octane-cetane relationship is linear
- Requirement for quality of each product should be incorporated

Overview

3 Simple problem

4 Assignment 1

R. Fourer, D.M. Gay, and B.W. Kernighan, AMPL: A Modeling Language for Mathematical Programming, Duxbury Press, 2003, http://www.ampl.com/BOOK/download.html.

- IBM ILOG AMPL, Version 12.2, User's Guide, Standard (Command-line) Version Including CPLEX Directives, IBM, May 2010, http://www.ampl.com/BOOKLETS/amplcplex122userguide.pdf.
- Z. Šabartová, A. B. Strömberg, Assignment 1: Biodiesel supply chain, March 7, 2014, http://www.math.chalmers.se/Math/Grundutb/CTH/mve165/1314/.

- Ch. Papapostolou, E. Kondili, J. K. Kaldellis, *Development and implementation of an optimisation model for biofuels supply chain*, Energy, Volume 36, Issue 10, October 2011, Pages 6019–6026.
- J. Lundgren, M. Rönnqvist, P. Värbrand, *Optimization*, Studentlitteratur AB, Lund, 2010.

イロト イポト イヨト イヨト