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Linear programs, convex polyhedra and extreme
points (Ch. 4.1)

Consider the linear optimization model (linear program)

















minimize z =
n

∑

j=1

cjxj

subject to

n
∑

j=1

aijxj ≤ bi , i = 1, . . . ,m

xj ≥ 0, j = 1, . . . , n

















⇔





min z = cTx
s.t. Ax ≤ b

x ≥ 0n





where cj , aij , and bi are constant parameters for i = 1, . . . ,m
and j = 1, . . . , n

The feasible region is a polyhedron X , defined as
X = {x ≥ 0n |

∑n
j=1 aijxj ≤ bi , i = 1, . . . ,m}

Lecture 3 Linear and Integer Optimization with Applications



Linear programs, convex polyhedra and extreme
points (Ch. 4.1)

A convex combination of the points xp, p = 1, . . . ,P , is a
point x that can be expressed as [Draw on the board]

x =
P

∑

p=1

λpx
p;

P
∑

p=1

λp = 1; λp ≥ 0, p = 1, . . . ,P

The feasible region of a linear program is a convex set, since
for any two feasible points x1 and x2 and any λ ∈ [0, 1] it
holds that [Draw on the board]
n

∑

j=1

aij(λx1
j + (1 − λ)x2

j ) = λ

n
∑

j=1

aijx
1
j + (1 − λ)

n
∑

j=1

aijx
2
j

≤ λbi + (1 − λ)bi = bi , i = 1, . . . ,m

and

λx1
j + (1 − λ)x2

j ≥ 0, j = 1, . . . , n
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Linear programs, convex polyhedra and extreme
points (Ch. 4.1)

Extreme point
The point xk is an extreme point of the polyhedron X if
xk ∈ X and it is not possible to express xk as a strict convex
combination of two distinct points in X , i.e.:

Given x1 ∈ X , x2 ∈ X , and 0 < λ < 1, it holds that
xk = λx1 + (1 − λ)x2 only if xk = x1 = x2.

[Draw on the board]

Optimal solution in an extreme point
Assume that the feasible region X is non-empty and bounded.
Then, the minimum value of the objective cTx is attained at
(at least) one extreme point xk of X .

[Draw on the board]
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A general linear program – notation

minimize or maximize c1x1 + . . . + cnxn

subject to ai1x1 + . . . + ainxn







≤
=
≥







bi , i = 1, . . . , m

xj







≤ 0
unrestricted in sign
≥ 0







, j = 1, . . . , n

cj , aij , and bi are constant parameters for i = 1, . . . ,m and
j = 1, . . . , n
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The standard form and the simplex method for
linear programs (Ch. 4.2)

Every linear program can be reformulated such that:

all constraints are expressed as equalities with non-negative

right hand sides

all variables involved are restricted to be non-negative

Referred to as the standard form

These requirements streamline the calculations of the simplex

method

Software solvers (e.g., Cplex, GLPK, Clp) can handle also
inequality constraints and unrestricted variables – the
reformulations are made automatically
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The simplex method—standard form reformulation

Slack variables:







n
∑

j=1

aijxj ≤ bi , ∀i

xj ≥ 0, ∀j






⇔











n
∑

j=1

aijxj +si = bi , ∀i

xj ≥ 0, ∀j

si ≥ 0, ∀i











The lego example:





2x1 +x2 ≤ 6
2x1 +2x2 ≤ 8

x1, x2 ≥ 0



 ⇔





2x1 +x2 +s1 = 6
2x1 +2x2 +s2 = 8

x1, x2, s1, s2 ≥ 0





s1 and s2 are called slack variables—they ”fill out” the
(positive) distances between the left and right hand sides
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The simplex method—standard form reformulations

Surplus variables:







n
∑

j=1

aijxj ≥ bi , ∀i

xj ≥ 0, ∀j






⇔











n
∑

j=1

aijxj −si = bi , ∀i

xj ≥ 0, ∀j

si ≥ 0, ∀i











Surplus variable s3 (a different example):

[

x1 + x2 ≥ 800
x1, x2 ≥ 0

]

⇔

[

x1 + x2 − s3 = 800
x1, x2, s3 ≥ 0

]
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The simplex method—standard form reformulations

Suppose that b < 0:







n
∑

j=1

ajxj ≤ b

xj ≥ 0, ∀j






⇔







n
∑

j=1

(−aj)xj ≥ −b

xj ≥ 0, ∀j






⇔











−

n
∑

j=1

ajxj −s = −b

xj ≥ 0, ∀j

s ≥ 0











Non-negative right hand side:

[

x1 − x2 ≤ −23
x1, x2 ≥ 0

]

⇔

[

−x1 + x2 ≥ 23
x1, x2 ≥ 0

]

⇔

[

−x1 + x2 − s4 = 23
x1, x2, s4 ≥ 0

]
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The simplex method—standard form reformulations

Suppose that some of the variables are unconstrained (here: k < n).
Replace xj with x1

j − x2
j for the corresponding indices:







n
∑

j=1

ajxj ≤ b

xj ≥ 0, j = 1, . . . , k






⇔















k
∑

j=1

ajxj +
n

∑

j=k+1

aj(x
1
j − x2

j ) + s = b

xj ≥ 0, j = 1, . . . , k ,

x1
j ≥ 0, x2

j ≥ 0, j = k + 1, . . . , n

s ≥ 0















Sign-restricted (non-negative) variables:

[

x1 + x2 ≤ 10
x1 ≥ 0

]

⇔

[

x1 + x1
2 − x2

2 ≤ 10
x1, x

1
2 , x2

2 ≥ 0

]

⇔

[

x1 + x1
2 − x2

2 + s5 = 10
x1, x

1
2 , x2

2 , s5 ≥ 0

]
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Basic feasible solutions (Ch. 4.3)

Consider m equations with n variables, where m ≤ n

Set n − m variables to zero and solve (if possible) the
remaining (m × m) system of equations

If the solution is unique, it is called a basic solution

A basic solution corresponds to an intersection (feasible
(x ≥ 0) or infeasible (x 6≥ 0)) of m hyperplanes in R

m

Each extreme point of the feasible set is an intersection of m

hyperplanes such that all variable values are ≥ 0

Basic feasible solution ⇔ extreme point of the feasible set

a11x1 + . . . + a1nxn = b1 x1 ≥ 0
a21x1 + . . . + a2nxn = b2 x2 ≥ 0

· · · · · ·
am1x1 + . . . + amnxn = bm xn ≥ 0
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Basic feasible solutions

Assume that m < n and that bi ≥ 0, i = 1, . . . ,m, and let

c =







c1
...
cn






, A =







a11 . . . a1n
...

. . .
...

am1 . . . amn






, b =







b1
...

bm






, x =







x1
...
xn






.

Consider the linear program to

minimize
x

z = cTx

subject to Ax = b

x ≥ 0

Partition x into m basic variables xB and n − m non-basic
variables xN , such that x = (xB , xN).

Analogously, let c = (cB , cN) and A = (AB ,AN) ≡ (B,N)

The matrix B ∈ R
m×m with inverse B−1 (if it exists)
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Basic feasible solutions (Ch. 4.8)

Rewrite the linear program as

minimize z = cT

BxB + cT

NxN (1a)

subject to BxB + NxN = b (1b)

xB ≥ 0m, xN ≥ 0n−m (1c)

Multiply the equation (1b) with B−1 from the left:

B−1BxB + B−1NxN = xB + B−1NxN = B−1b

⇒ xB = B−1b − B−1NxN (2)

Replace xB in (1) by the expression (2):

cT

BxB+cT

NxN = cT

BB−1(b−NxN)+cT

NxN = cT

BB−1b+(cT

N−cT

BB−1N)xN

⇒ minimize z = cT

BB−1b + (cT

N − cT

BB−1N)xN

subject to B−1b − B−1NxN ≥ 0m

xN ≥ 0n−m
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Basic feasible solutions

The rewritten program:

⇒ minimize z = cT

BB−1b + (cT

N − cT

BB−1N)xN (3a)

subject to B−1b − B−1NxN ≥ 0m (3b)

xN ≥ 0n−m (3c)

At the basic solution defined by B ⊂ {1, . . . , n}:
Each non-basic variable takes the value 0, i.e., xN = 0
The basic variables take the values
xB = B−1b − B−1NxN = B−1b
The value of the objective function is z = cT

BB−1b
The basic solution is feasible if B−1b ≥ 0m
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The simplex method: Optimality and feasibility and
change of basis (Ch. 4.4)

Optimality condition (for minimization)

The basis B is optimal if cT

N − cT

BB−1N ≥ 0n−m

(marginal values = reduced costs ≥ 0)

If not, choose as entering variable j ∈ N the one with the
lowest (negative) value of the reduced cost cj − cT

BB−1Aj

Feasibility condition

For all i ∈ B it holds that xi = (B−1b)i − (B−1Aj)ixj

Choose the leaving variable i∗ ∈ B according to

i∗ = arg min
i∈B

{

(B−1b)i
(B−1Aj)i

∣

∣

∣

∣

(B−1Aj)i > 0

}
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Basic feasible solutions, example

Constraints:

x1 ≤ 23 (1)
0.067x1 + x2 ≤ 6 (2)

3x1 + 8x2 ≤ 85 (3)
x1, x2 ≥ 0

Add slack variables:

x1 +s1 = 23 (1)
0.067x1 +x2 +s2 = 6 (2)

3x1 +8x2 +s3 = 85 (3)
x1, x2, s1, s2, s3 ≥ 0

x1

x2

1

1

5

5

10

10 15 20 25

n = 5

m = 3
(1)

(2)

(3)
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Basic and non-basic variables and solutions

basic basic solution non-basic point feasible?
variables variables (0, 0)

s1, s2, s3 23 6 85 x1, x2 A yes
s1, s2, x1 −5 1

3
4 1

9
28 1

3
s3, x2 H no

s1, s2, x2 23 −4 5
8

10 5
8

x1, s3 C no
s1, x1, s3 −67 90 −185 s2, x2 I no
s1, x2, s3 23 6 37 s2, x1 B yes
x1, s2, s3 23 4 7

15
16 s1, x2 G yes

x2, s2, s3 - - - s1, x1 - -
x1, x2, s1 15 5 8 s2, s3 D yes
x1, x2, s2 23 2 2 7

15
s1, s3 F yes

x1, x2, s3 23 4 7
15

−19 11
15

s1, s2 E no

x1

x2

1

1

5

5

10

10 15 20 25

A

B

C

D
E

F

G H
I

(1)

(2)

(3)
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Basic feasible solutions correspond to solutions to
the system of equations that fulfil non-negativity

x1

x2

1
1

5

5

10

10 15 20 25
A

B D

F
G

(1)

(2)

(3)





x1 +s1 = 23
0.067x1 +x2 +s2 = 6

3x1 +8x2 +s3 = 85





A: x1 = x2 = 0 ⇒
2

4

s1 = 23
s2 = 6

s3 = 85

3

5

B: x1 = s2 = 0 ⇒
2

4

s1 = 23
x2 = 6

8x2 +s3 = 85

3

5

D: s3 = s2 = 0 ⇒
2

4

x1 +s1 = 23
0.067x1 +x2 = 6

3x1 +8x2 = 85

3

5

F: s3 = s1 = 0 ⇒
2

4

x1 = 23
0.067x1 +x2 +s2 = 6

3x1 +8x2 = 85

3

5

G: x2 = s1 = 0 ⇒
2

4

x1 = 23
0.067x1 +s2 = 6

3x1 +s3 = 85

3

5
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Basic infeasible solutions corresp. to solutions to the
system of equations with one or more variables < 0

x1

x2

1
1

5

5

10

10 15 20 25

C

E

H
I

(1)

(2)

(3)





x1 +s1 = 23
0.067x1 +x2 +s2 = 6

3x1 +8x2 +s3 = 85





H: x2 = s3 = 0 ⇒
2

4

x1 +s1 = 23
0.067x1 +s2 = 6

3x1 = 85

3

5

C: x1 = s3 = 0 ⇒
2

4

s1 = 23
x2 +s2 = 6

8x2 = 85

3

5

I: s2 = x2 = 0 ⇒
2

4

x1 +s1 = 23
0.067x1 = 6

3x1 +s3 = 85

3

5

-: s1 = x1 = 0 ⇒
2

4

0 = 23
x2 +s2 = 6

8x2 +s3 = 85

3

5

E: s1 = s2 = 0 ⇒
2

4

x1 = 23
0.067x1 +x2 = 6

3x1 +8x2 +s3 = 85

3

5
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Basic feasible solutions and the simplex method

Express the m basic variables in terms of the n − m non-basic

variables

Example: Start at x1 = x2 = 0 ⇒ s1, s2, s3 are basic





x1 +s1 = 23
1
15x1 +x2 +s2 = 6
3x1 +8x2 +s3 = 85





Express s1, s2, and s3 in terms of x1 and x2 (non-basic):




s1 = 23 −x1

s2 = 6 − 1
15x1 −x2

s3 = 85 −3x1 −8x2





We wish to maximize the objective function 2x1 + 3x2

Express the objective in terms of the non-basic variables:
(maximize) z = 2x1 + 3x2 ⇔ z − 2x1 − 3x2 = 0
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Basic feasible solutions and the simplex method

The first basic solution can be represented as
−z +2x1 +3x2 = 0 (0)

x1 +s1 = 23 (1)
1
15x1 + x2 + s2 = 6 (2)
3x1 + 8x2 + s3 = 85 (3)

Marginal values for increasing the non-basic variables x1 and
x2 from zero: 2 and 3, resp.

⇒ Choose x2 — let x2 enter the basis Draw graph!!

One basic variable (s1, s2, or s3) must leave the basis. Which?

The value of x2 can increase until some basic variable reaches
the value 0:

(2) : s2 = 6 − x2 ≥ 0 ⇒ x2 ≤ 6
(3) : s3 = 85 − 8x2 ≥ 0 ⇒ x2 ≤ 105

8

}

⇒
s2 = 0 when

x2 = 6
(and s3 = 37)

s2 will leave the basis
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Change basis through row operations

Eliminate s2 from the basis, let x2 enter the basis using row
operations:
−z +2x1 +3x2 = 0 (0)

x1 +s1 = 23 (1)
1
15x1 +x2 +s2 = 6 (2)
3x1 +8x2 +s3 = 85 (3)

−z + 9
5x1 −3s2 = −18 (0) −3·(2)
x1 +s1 = 23 (1)−0·(2)

1
15x1 +x2 +s2 = 6 (2)
37
15x1 −8s2 +s3 = 37 (3)−8·(2)

Corresponding basic solution: s1 = 23, x2 = 6, s3 = 37.

Nonbasic variables: x1 = s2 = 0

The marginal value of x1 is 9
5 > 0. Let x1 enter the basis

Which one should leave? s1, x2, or s3?
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Change basis ...

−z +9
5x1 −3s2 = −18 (0)
x1 +s1 = 23 (1)

1
15x1 +x2 +s2 = 6 (2)
37
15x1 −8s2 +s3 = 37 (3)

The value of x1 can increase until some basic variable reaches
the value 0:
(1) : s1 = 23 − x1 ≥ 0 ⇒ x1 ≤ 23
(2) : x2 = 6 − 1

15x1 ≥ 0 ⇒ x1 ≤ 90
(3) : s3 = 37 − 37

15x1 ≥ 0 ⇒ x1 ≤ 15







⇒
s3 = 0 when

x1 = 15

x1 enters the basis and s3 leaves the basis

Perform row operations:
−z +2.84s2 −0.73s3 = −45 (0)−(3)· 1537 ·

9
5

s1 +3.24s2 −0.41s3 = 8 (1)−(3) · 15
37

x2 +1.22s2 −0.03s3 = 5 (2)−(3) · 15
37 · 1

15
x1 −3.24s2 +0.41s3 = 15 (3)·1537
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Change basis ...

−z +2.84s2 −0.73s3 = −45 (0)
s1 +3.24s2 −0.41s3 = 8 (1)

x2 +1.22s2 −0.03s3 = 5 (2)
x1 −3.24s2 +0.41s3 = 15 (3)

Let s2 enter the basis (marginal value > 0)

The value of s2 can increase until some basic variable = 0:

(1) : s1 = 8 − 3.24s2 ≥ 0 ⇒ s2 ≤ 2.47
(2) : x2 = 5 − 1.22s2 ≥ 0 ⇒ s2 ≤ 4.10
(3) : x1 = 15 + 3.24s2 ≥ 0 ⇒ s2 ≥ −4.63







⇒
s1 = 0 when
s2 = 2.47

s2 enters the basis and s1 will leave the basis

Perform row operations:
−z −0.87s1 −0.37s3 = −52 (0)−(1) · 2.84

3.24
0.31s1 +s2 −0.12s3 = 2.47 (1)· 1

3.24
x2 −0.37s1 +0.12s3 = 2 (2)−(1) · 1.22

3.24
x1 +s1 = 23 (3)+(1)
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Optimal basic solution

−z −0.87s1 −0.37s3 = −52
0.31s1 +s2 −0.12s3 = 2.47

x2 −0.37s1 +0.12s3 = 2
x1 +s1 = 23

No marginal value is positive. No improvement can be made

The optimal basis is given by s2 = 2.47, x2 = 2, and x1 = 23

Non-basic variables: s1 = s3 = 0

Optimal value: z = 52

x

y

1

1

5

5 10 15 20 25
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Summary of the solution course

basis −z x1 x2 s1 s2 s3 RHS

−z 1 2 3 0 0 0 0
s1 0 1 0 1 0 0 23
s2 0 0.067 1 0 1 0 6
s3 0 3 8 0 0 1 85

−z 1 1.80 0 0 -3 0 -18
s1 0 1 0 1 0 0 23
x2 0 0.07 1 0 1 0 6
s3 0 2.47 0 0 -8 1 37

−z 1 0 0 0 2.84 -0.73 -45
s1 0 0 0 1 3.24 -0.41 8
x2 0 0 1 0 1.22 -0.03 5
x1 0 1 0 0 -3.24 0.41 15

−z 1 0 0 -0.87 0 -0.37 -52
s2 0 0 0 0.31 1 -0.12 2.47
x2 0 0 1 -0.37 0 0.12 2
x1 0 1 0 1 0 0 23
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Solve the lego problem using the simplex method!

maximize z = 1600x1 + 1000x2

subject to 2x1 + x2 ≤ 6
2x1 + 2x2 ≤ 8

x1, x2 ≥ 0

Homework!!
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