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Linear programs, convex polyhedra and extreme

points (Ch. 4.1)

@ Consider the linear optimization model (linear program)

— n -

minimize z:g G X;

j=1 min  z=c'x
. n ] & s.t. Ax<b
subject to Za;jxj-gb,-, i=1,...,m x > 0"
j=1
i x>0, j=1...n ]
@ where ¢;, ajj, and b; are constant parameters for i =1,..., m

and j=1,...,n

@ The feasible region is a polyhedron X, defined as
X={x>0"[>" a5 < bj,i=1,...,m}
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Linear programs, convex polyhedra and extreme

points (Ch. 4.1)

@ A convex combination of the points x°, p=1,...,P, is a
point x that can be expressed as [DRAW ON THE BOARD]

P P
x=3 ApxPi D A, =1 A >0,p=1,...,P
p=1 p=1

@ The feasible region of a linear program is a convex set, since
for any two feasible points x! and x? and any A € [0,1] it
holds that [DRAW ON THE BOARD]

n n n
Saind + A=) = AN apd + (10D apd
J=1 i=1 j=1

< )\b,'—i-(].—)\)b,':b,', i=1,...,m
and

M+ (1=Mx? > 0, j=1,...,n

Lecture 3 Linear and Integer Optimization with Applications



Linear programs, convex polyhedra and extreme

points (Ch. 4.1)

o Extreme point
The point x¥ is an extreme point of the polyhedron X if
xK € X and it is not possible to express x as a strict convex
combination of two distinct points in X, i.e.:
Given x! € X, x2 € X, and 0 < X < 1, it holds that
x¥ = Ax! 4 (1 — M)x? only if xk = x! = x2.
[DRAW ON THE BOARD]

o Optimal solution in an extreme point
Assume that the feasible region X is non-empty and bounded.
Then, the minimum value of the objective cTx is attained at
(at least) one extreme point x of X.
[DRAW ON THE BOARD]
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A general linear program — notation

minimize or maximize ¢jxy + ...+ ChX,

<
subject to aj1x3 + ...+ ainX, = b, i=1,...,m
>
<0
X; unrestricted insign >, j=1,....n
>0
® ¢j, ajj, and b; are constant parameters for i = 1,..., m and

j=1,...,n
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The standard form and the simplex method for

linear programs (Ch. 4.2)

@ Every linear program can be reformulated such that:

o all constraints are expressed as equalities with non-negative
right hand sides
o all variables involved are restricted to be non-negative

@ Referred to as the standard form

@ These requirements streamline the calculations of the simplex
method

@ Software solvers (e.g., Cplex, GLPK, Clp) can handle also
inequality constraints and unrestricted variables — the
reformulations are made automatically

Lecture 3 Linear and Integer Optimization with Applications



@ Slack variables:

n
n

ajiX; s; = b;
dapg < by Vi 2o 5 = b

s & | J=1

- X, >0

xi > 0, V J =
J - ’ J SI ZO)

@ The lego example:

2x1 +x < 6 2x1  +x2 +s1 =
2x1 +2x < 8 | & | 2x1 +2x0 +s =
x1,x0 > 0 X1,X2,51,% >

@ 51 and s, are called slack variables—they " fill out” the

The simplex method—standard form reformulation

oo

(positive) distances between the left and right hand sides
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The simplex method—standard form reformulations

@ Surplus variables:

n
n .
Z ajjXj > by, Vi Z ajjXj —Sji = b;, Vi
j=1 = Jj=1 . y
— | B § J
> f >0,
xi > 0, Vj . o v

@ Surplus variable s3 (a different example):

|:X1 + X2

800:|<:>|:X1+X2—53 800
X1, X2

> —
> 0 X1,X2,53 2> 0
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The simplex method—standard form reformulations

@ Suppose that b < 0:

n n
> ax<b (—aj)x > —b -2 a5 s = b
j=1 < | = = =t > 0.V
X >0, X >0, % Sy

@ Non-negative right hand side:

X1 —xp < —23 o —x1+xp > 23 - —x1+x0 — s, =23
x1,x2 >0 x1,x2 >0 x1,x2,84 >0
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The simplex method—standard form reformulations

@ Suppose that some of the variables are unconstrained (here: k < n).
Replace x; with x}* — x? for the corresponding indices:

Zajxj—i—Zaj )+s =b

n

Zanij =1 j=k+1

— A x; >0, j=1,...,k,

xp>0,j=1,...,k xj120x >0, j=k+1,...,n
s>0

@ Sign-restricted (non-negative) variables:

x1+x <10 o X1—|—X21—X22 <10 N X1—|—x21—x22—|—55 =10
X1 ZO X17X217X22 20 X17X%7X22755 > 0
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Basic feasible solutions (Ch. 4.3)

Consider m equations with n variables, where m < n

Set n — m variables to zero and solve (if possible) the
remaining (m x m) system of equations

If the solution is unique, it is called a basic solution

A basic solution corresponds to an intersection (feasible
(x > 0) or infeasible (x 2 0)) of m hyperplanes in R™

Each extreme point of the feasible set is an intersection of m
hyperplanes such that all variable values are > 0

Basic feasible solution < extreme point of the feasible set

a11x1 + ...+ aipxp = b1 x1 >0
axnx1 + ...+ apxn = bo x2 >0
amiX1 + ...+ ampXn = bm x, >0

Lecture 3 Linear and Integer Optimization with Applications



Basic feasible solutions

@ Assume that m < nand that b; >0, i=1,...,m, and let
C1 a1l ... din b1 X1

Cn ami --- amn bm Xn
@ Consider the linear program to

minimize z =cTx
X

subject to Ax=Db
x>0

@ Partition x into m basic variables xg and n — m non-basic
variables xp, such that x = (xg,xn).

@ Analogously, let ¢ = (cg,cp) and A = (Ag,Ay) = (B,N)

@ The matrix B € R™*™ with inverse B~ (if it exists)
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Basic feasible solutions (Ch. 4.8)

@ Rewrite the linear program as

minimize z = cgxpg + CyXn (1a)
subject to Bxg +Nxy = b (1b)
Xg > Om,XN > o (1C)

@ Multiply the equation (1b) with B~1 from the left:
B !Bxg + B !Nxy = xg + B"!Nxy = B~'b
= xg = B71b — B"INxy (2)
@ Replace xg in (1) by the expression (2):

cpxgtchxy = 5B H(b—Nxy)+cyxy = cEB 7 b+(cf—c5BIN)xy

= minimize z=ciB 7 b+ (cjy — c5BTIN)xy
subject to B~ 'b— B 'Nxy

XN

Om

>
> On—m
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Basic feasible solutions

@ The rewritten program:

= minimize z=ciB b+ (cjy — c5BIN)xy (3a)
subject to B'b—- B !Nxy > 0™ (3b)
xy > 0777 (3c)

@ At the basic solution defined by B C {1,...,n}:
o Each non-basic variable takes the value 0, i.e., xy =0
@ The basic variables take the values
xg =B b — B !Nxy=B~!b
o The value of the objective function is z = c5B~b
o The basic solution is feasible if B~'b > 0™
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The simplex method: Optimality and feasibility and

change of basis (Ch. 4.4)

@ Optimality condition (for minimization)

The basis B is optimal if ¢}, — cTBB_lN > Qn-m
(marginal values = reduced costs > 0)

If not, choose as entering variable j € N the one with the
lowest (negative) value of the reduced cost ¢; — c5B~tA;

@ Feasibility condition
For all i € B it holds that x; = (B™!b); — (B71A;)x;
Choose the leaving variable i* € B according to

% . (B_lb)i —1
1 :arg?gg{(BfAj)l (B A_])I>O
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Basic feasible solutions, example

@ Constraints:

X1 < 23 (1)

00671 + x < 6 (2)

3x1 + 8 < 85 (3)

X1, X2 Z 0
@ Add slack variables:

X1 +s51 =23 (1)
0.067x7 “+Xo +5 =6 (2)
3x1 +8x +s3 =285 (3)

X1,X2,51,52,53 Z 0
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Basic and non-basic variables and solutions

basic basic solution non-basic point  feasible?

variables variables (0, 0)

S51,52,53 23 6 85 X1, X2 A yes
s1,8, -5 43 281 53, X2 H no
51,52, X2 23 —4% 10% X1, 53 C no
S1,X1,53 —67 90 —185 52, X2 | no
S1, X2, S3 23 6 37 S, X1 B yes
X1,52,53 23 4% 16 S1,X2 G yes
X2,52,53 - - - S1,X1 - -
X1, X2, S1 15 5 8 S, S3 D yes
X1, X2, 52 23 2 21—75 51,53 F yes
X1,X2,53 23 4115 —19% 51,5 E no

T TS 5 o P X
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Basic feasible solutions correspond to solutions to

the system of equations that fulfil non-negativity

_ X1 +s1 =23
1 0.067x1 +xo +5 =
3x; +8x +s3 =85

w
K.
I

&

[T

0 o N

oo ®

[

£ x
& S
i
© o N
G ®
[E—

+s3

3x1 +8x2

0.067x; +x2  +s =
3x1  +8xp =

D:s3=5=0= { 0.067x 4 = ;
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Basic infeasible solutions corresp. to solutions to the

system of equations with one or more variables < 0

-~ X1 +s1 =23
a1 0.067x1 +xo +5 =
3x; +8x +s3 =85
+s =23
H Xp = S3 = 0= 0.0672 ' +s; =6
3x =85
s: =23
C X1—S3—0:> X2 ' +s, =6 }
8% =85
X1 +s1 =23
I: 5o =x=0= | 0067 =6
3x1 +s3 =85
0 =23
- s1=x1=0= x4 =6
8xo +s3 =285
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Basic feasible solutions and the simplex method

@ Express the m basic variables in terms of the n — m non-basic
variables

@ Example: Start at x; = xo = 0 = s1, s, s3 are basic

X1 +5s1 =23
Ex1 4x +52 =6
3x1 +8x +s3 =285

@ Express s, s», and s3 in terms of x; and xy (non-basic):

51 = 23 —X1
Sy = 6 —%Xl —X2
53 = 85 —3X1 —8X2

@ We wish to maximize the objective function 2x; + 3x»
@ Express the objective in terms of the non-basic variables:
(maximize) z =2x3 + 3x & z—2x1—3x% =0
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Basic feasible solutions and the simplex method

@ The first basic solution can be represented as

-z +2x3  +3x% =0 (0)
X1 +51 =23 (1)

%Xl + X2 + S =61 (2

3x1 + 8xp +s3 =85 (3)

@ Marginal values for increasing the non-basic variables x; and
xp from zero: 2 and 3, resp.

= Choose x, — let x» enter the basis DRAW GRAPH!!
@ One basic variable (s1, s, or s3) must leave the basis. Which?

@ The value of x» can increase until some basic variable reaches
the value O:

(2):5p=6—x>0 =x <6 N
(3)153:85—8X220 :>X2§].Og

s = 0 when
X = 6
(and s3 = 37)

@ sp will leave the basis
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Change basis through row operations

Eliminate s, from the basis, let x, enter the basis using row
operations:
-z  42x1 +3x% = 0| (0)
X1 +51 = 23 (1)
%Xl +X2 +57 = 6 (2)
3X1 +8X2 +s3 | = 85 (3)
-z +3x —3s, = —18(0) —3:(2)
X1 +51 = 23 (1)—0(2)
%Xl “+Xo +5> = 6 (2)
2Lx —8s, +s3| = 37| (3)-8(2)

Corresponding basic solution: s; = 23, x, = 6, s3 = 37.

Nonbasic variables: x; = s, =0

The marginal value of xj is % > 0. Let x; enter the basis

@ Which one should leave? s, xo, or s37
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Change basis ...

—z +3x —3s, = 18 (0)
X1 +51 = 23 (1)
%Xl -+ X2 +5> = 6 (2)
%—5X1 —8sy +s3 | = 37 (3)
@ The value of x; can increase until some basic variable reaches
the value O:
(1):51:23—X120 =x3 <23 o
(2 :0=6—2x>0 =x<9 p= 53;0_"f5‘e”
(3):s3=37T-31q>0 =x <15 1
@ xy enters the basis and s3 leaves the basis
@ Perform row operations:
—z +2.84s, —0.73s3 | = —45 (0)—(3)-%-%
s; +3.24s, —041ls3 | = 8| (1)—(3)- 2
X2 +1.22s5, —0.03s3 | = 51(2)-03) 2 &
X1 —3.24s, +04ls3 | = 15| (3)8
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Change basis ...

—z +2.84s, —0.73s3 | = —45] (0)
s1 +3.24sy —0.41s3 | = 8 (1)

X2 +1.22sp —0.03s3 | = 5 (2)

X1 —3.24s, +0.41s3 | = 15 (3)

@ Let s, enter the basis (marginal value > 0)

@ The value of s, can increase until some basic variable = 0:

(1) 151 =8-3245,>0 =5 <247
(2) i =5-125>0 =s <410 4= 5= 0when
(3):x1 =15+3.245 >0 = 5> —4.63 s2. = 247
@ s enters the basis and s; will leave the basis
@ Perform row operations:
—z —0.87s; —0.37s3 | = —52] (0)—(1)- 554
03lsy +s; —0.12s3 | = 247 | (1)-55;
xy —0.37s; +0.12s3 | = 21 (2-(01) 33
X1 —+51 = 23 (3)+(1)
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Optimal basic solution

—Z —0.8751 —0.3753 = =52
0.31sy +s» —0.12s3 | = 247

x> —0.37s1 +0.12s5 | = 2

X1 +s1 = 23

@ No marginal value is positive. No improvement can be made
@ The optimal basis is given by s = 2.47, xo = 2, and x; = 23
@ Non-basic variables: s; =s3 =0

@ Optimal value: z =52
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Summary of the solution course

basis | -z x X0 51 S s3 | RHS
—z 1 2 3 0 0 0 0
S1 0 1 0 1 0 0 23
S 0 0067 1 0 1 0 6
S3 0 3 8 0 0 1 85
—z 1 180 0 0 -3 0 -18
S1 0 1 0 1 0 0 23
X5 0 0.07 1 0 1 0 6
S3 0 247 O 0 -8 1 37
-z 1 0 0 0 284 -0.73 -45
S1 0 0 0 1 3.24 -0.41 8
X 0 0 1 0 1.22 -0.03 5
X1 0 1 0 0 -3.24 041 15
—z 1 0 0 -0.87 0 -0.37 -52
S 0 0 0 0.31 1 -0.12 | 2.47
X2 0 0 1 -0.37 0 0.12 2
X1 0 1 0 1 0 0 23
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Solve the lego problem using the simplex method!

maximize z = 1600x; + 1000x;
subject to 2x; + x < 6
2x1  + 2% < 8
xy, x2 =2 0
HoMEWORK!!
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