MVE165/MMG631 Linear and Integer Optimization with Applications Lecture 3 Extreme points of convex polyhedra; reformulations; basic feasible solutions; the simplex method

Ann-Brith Strömberg

2014-03-25

Linear programs, convex polyhedra and extreme points (Ch. 4.1)

• Consider the linear optimization model (linear program)

$$\begin{bmatrix} \text{minimize} & z = \sum_{j=1}^{n} c_{j} x_{j} \\ \text{subject to} & \sum_{j=1}^{n} a_{ij} x_{j} \leq b_{i}, \quad i = 1, \dots, m \\ & x_{j} \geq 0, \quad j = 1, \dots, n \end{bmatrix} \Leftrightarrow \begin{bmatrix} \text{min} & z = \mathbf{c}^{\mathrm{T}} \mathbf{x} \\ \text{s.t.} & \mathbf{A} \mathbf{x} \leq \mathbf{b} \\ & \mathbf{x} \geq \mathbf{0}^{n} \end{bmatrix}$$

- where c_j, a_{ij}, and b_i are constant parameters for i = 1,..., m and j = 1,..., n
- The feasible region is a polyhedron X, defined as $X = \{\mathbf{x} \ge \mathbf{0}^n \mid \sum_{j=1}^n a_{ij}x_j \le b_i, i = 1, \dots, m\}$

Linear programs, convex polyhedra and extreme points (Ch. 4.1)

A convex combination of the points x^p, p = 1,..., P, is a point x that can be expressed as [DRAW ON THE BOARD]

$$\mathbf{x} = \sum_{p=1}^{P} \lambda_p \mathbf{x}^p; \quad \sum_{p=1}^{P} \lambda_p = 1; \quad \lambda_p \ge 0, \ p = 1, \dots, P$$

 The feasible region of a linear program is a *convex set*, since for any two feasible points x¹ and x² and any λ ∈ [0, 1] it holds that
 [DRAW ON THE BOARD]

$$\sum_{j=1}^{n} a_{ij} (\lambda x_j^1 + (1-\lambda)x_j^2) = \lambda \sum_{j=1}^{n} a_{ij} x_j^1 + (1-\lambda) \sum_{j=1}^{n} a_{ij} x_j^2$$

$$\leq \lambda b_i + (1-\lambda)b_i = b_i, \quad i = 1, \dots, m$$

and

$$\lambda x_j^1 + (1-\lambda)x_j^2 \geq 0, \quad j=1,\ldots,n$$

Lecture 3

Linear and Integer Optimization with Applications

Linear programs, convex polyhedra and extreme points (Ch. 4.1)

• Extreme point

The point \mathbf{x}^k is an *extreme point* of the polyhedron X if $\mathbf{x}^k \in X$ and it is *not* possible to express \mathbf{x}^k as a *strict convex combination* of two distinct points in X, i.e.:

Given
$$\mathbf{x}^1 \in X$$
, $\mathbf{x}^2 \in X$, and $0 < \lambda < 1$, it holds that
 $\mathbf{x}^k = \lambda \mathbf{x}^1 + (1 - \lambda)\mathbf{x}^2$ only if $\mathbf{x}^k = \mathbf{x}^1 = \mathbf{x}^2$.
[DRAW ON THE BOARD]

Optimal solution in an extreme point
 Assume that the feasible region X is non-empty and bounded.
 Then, the minimum value of the objective c^Tx is attained at (at least) one extreme point x^k of X.

[DRAW ON THE BOARD]

minimize or maximize $c_1x_1 + \ldots + c_nx_n$

subject to
$$a_{i1}x_1 + \ldots + a_{in}x_n \quad \left\{ \begin{array}{c} \leq \\ = \\ \geq \end{array} \right\} \quad b_i, \quad i = 1, \ldots, m$$

$$x_j \quad \left\{ \begin{array}{l} \leq 0 \\ \text{unrestricted in sign} \\ \geq 0 \end{array} \right\}, \quad j = 1, \dots, n$$

• c_j , a_{ij} , and b_i are constant parameters for i = 1, ..., m and j = 1, ..., n

The standard form and the simplex method for linear programs (Ch. 4.2)

- Every linear program can be reformulated such that:
 - all constraints are expressed as *equalities* with *non-negative right hand sides*
 - all variables involved are restricted to be *non-negative*
- Referred to as the *standard form*
- These requirements streamline the calculations of the *simplex method*
- Software solvers (e.g., Cplex, GLPK, Clp) can handle also inequality constraints and unrestricted variables the reformulations are made automatically

The simplex method—standard form reformulation

• Slack variables:

$$\left[\begin{array}{ccc}\sum_{j=1}^n a_{ij}x_j &\leq b_i, \ \forall i\\ x_j &\geq 0, \ \forall j\end{array}\right] \Leftrightarrow \left[\begin{array}{ccc}\sum_{j=1}^n a_{ij}x_j &+s_i &=b_i, \ \forall i\\ x_j &\geq 0, \ \forall j\\ s_i &\geq 0, \ \forall i\end{array}\right]$$

The lego example:

$$\begin{bmatrix} 2x_1 & +x_2 \le & 6\\ 2x_1 & +2x_2 \le & 8\\ & x_1, x_2 \ge & 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} 2x_1 & +x_2 & +s_1 & = & 6\\ 2x_1 & +2x_2 & +s_2 & = & 8\\ & & x_1, x_2, s_1, s_2 \ge & 0 \end{bmatrix}$$

 s₁ and s₂ are called *slack variables*—they "fill out" the (positive) distances between the left and right hand sides

The simplex method—standard form reformulations

• Surplus variables:

$$\left[\begin{array}{ccc} \sum\limits_{j=1}^n a_{ij}x_j & \geq & b_i, \ \forall i \\ x_j & \geq & 0, \ \forall j\end{array}\right] \Leftrightarrow \left[\begin{array}{ccc} \sum\limits_{j=1}^n a_{ij}x_j & -s_i & = b_i, \ \forall i \\ x_j & \geq & 0, \ \forall j \\ s_i & \geq & 0, \ \forall i\end{array}\right]$$

• *Surplus variable s*₃ (a different example):

$$\left[\begin{array}{cccc} x_1 & + & x_2 & \ge & 800 \\ & x_1, x_2 & \ge & 0 \end{array}\right] \Leftrightarrow \left[\begin{array}{cccc} x_1 & + & x_2 & - & \mathbf{s_3} & = & 800 \\ & & x_1, x_2, \mathbf{s_3} & \ge & 0 \end{array}\right]$$

The simplex method—standard form reformulations

• Suppose that b < 0:

• Non-negative right hand side:

$$\begin{bmatrix} x_1 - x_2 \leq -23 \\ x_1, x_2 \geq 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} -x_1 + x_2 \geq 23 \\ x_1, x_2 \geq 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} -x_1 + x_2 - s_4 = 23 \\ x_1, x_2, s_4 \geq 0 \end{bmatrix}$$

The simplex method—standard form reformulations

 Suppose that some of the variables are unconstrained (here: k < n). Replace x_j with x_j¹ - x_j² for the corresponding indices:

$$\begin{bmatrix} \sum_{j=1}^{n} a_{j}x_{j} \le b \\ x_{j} \ge 0, j = 1, \dots, k \end{bmatrix} \Leftrightarrow \begin{bmatrix} \sum_{j=1}^{k} a_{j}x_{j} + \sum_{j=k+1}^{n} a_{j}(x_{j}^{1} - x_{j}^{2}) + s &= b \\ x_{j} \ge 0, \ j = 1, \dots, k, \\ x_{j}^{1} \ge 0, x_{j}^{2} \ge 0, \quad j = 1, \dots, k, \\ x_{j}^{1} \ge 0, x_{j}^{2} \ge 0, \quad j = k+1, \dots, n \\ s \ge 0 \end{bmatrix}$$

• Sign-restricted (non-negative) variables:

$$\begin{bmatrix} x_1 + x_2 \le 10 \\ x_1 \ge 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x_1 + x_2^1 - x_2^2 \le 10 \\ x_1, x_2^1, x_2^2 \ge 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x_1 + x_2^1 - x_2^2 + s_5 = 10 \\ x_1, x_2^1, x_2^2, s_5 \ge 0 \end{bmatrix}$$

Basic feasible solutions (Ch. 4.3)

- Consider *m* equations with *n* variables, where $m \le n$
- Set n m variables to zero and solve (if possible) the remaining $(m \times m)$ system of equations
- If the solution is *unique*, it is called a *basic* solution
- A basic solution corresponds to an *intersection* (feasible (x ≥ 0) or infeasible (x ≥ 0)) of m hyperplanes in ℝ^m
- Each extreme point of the feasible set is an intersection of m hyperplanes such that all variable values are ≥ 0
- Basic feasible solution \Leftrightarrow extreme point of the feasible set

$$\begin{array}{ll} a_{11}x_1 + \ldots + a_{1n}x_n = b_1 & x_1 \ge 0 \\ a_{21}x_1 + \ldots + a_{2n}x_n = b_2 & x_2 \ge 0 \\ & \ddots & & \ddots \\ a_{m1}x_1 + \ldots + a_{mn}x_n = b_m & x_n \ge 0 \end{array}$$

Basic feasible solutions

- Assume that m < n and that $b_i \ge 0$, i = 1, ..., m, and let $\mathbf{c} = \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix}$, $\mathbf{A} = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix}$, $\mathbf{b} = \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix}$, $\mathbf{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$.
- Consider the linear program to

$$\begin{array}{ll} \underset{\mathbf{x}}{\text{minimize}} & z = \mathbf{c}^{\mathrm{T}}\mathbf{x} \\ \text{subject to} & \mathbf{A}\mathbf{x} = \mathbf{b} \\ & \mathbf{x} \geq \mathbf{0} \end{array}$$

- Partition **x** into *m* basic variables \mathbf{x}_B and n m non-basic variables \mathbf{x}_N , such that $\mathbf{x} = (\mathbf{x}_B, \mathbf{x}_N)$.
- Analogously, let $\mathbf{c} = (\mathbf{c}_B, \mathbf{c}_N)$ and $\mathbf{A} = (\mathbf{A}_B, \mathbf{A}_N) \equiv (\mathbf{B}, \mathbf{N})$
- The matrix $\mathbf{B} \in \mathbb{R}^{m imes m}$ with inverse \mathbf{B}^{-1} (if it exists)

Basic feasible solutions (Ch. 4.8)

• Rewrite the linear program as

minimize
$$z = \mathbf{c}_B^{\mathrm{T}} \mathbf{x}_B + \mathbf{c}_N^{\mathrm{T}} \mathbf{x}_N$$
 (1a)

• Multiply the equation (1b) with **B**⁻¹ from the left:

$$\mathbf{B}^{-1}\mathbf{B}\mathbf{x}_{B} + \mathbf{B}^{-1}\mathbf{N}\mathbf{x}_{N} = \mathbf{x}_{B} + \mathbf{B}^{-1}\mathbf{N}\mathbf{x}_{N} = \mathbf{B}^{-1}\mathbf{b}$$
$$\Rightarrow \mathbf{x}_{B} = \mathbf{B}^{-1}\mathbf{b} - \mathbf{B}^{-1}\mathbf{N}\mathbf{x}_{N}$$
(2)

• Replace \mathbf{x}_B in (1) by the expression (2):

 $\mathbf{c}_B^{\mathrm{T}}\mathbf{x}_B + \mathbf{c}_N^{\mathrm{T}}\mathbf{x}_N = \mathbf{c}_B^{\mathrm{T}}\mathbf{B}^{-1}(\mathbf{b} - \mathbf{N}\mathbf{x}_N) + \mathbf{c}_N^{\mathrm{T}}\mathbf{x}_N = \mathbf{c}_B^{\mathrm{T}}\mathbf{B}^{-1}\mathbf{b} + (\mathbf{c}_N^{\mathrm{T}} - \mathbf{c}_B^{\mathrm{T}}\mathbf{B}^{-1}\mathbf{N})\mathbf{x}_N$

$$\Rightarrow \quad \begin{array}{ll} \text{minimize} \quad z = \mathbf{c}_B^{\mathrm{T}} \mathbf{B}^{-1} \mathbf{b} + (\mathbf{c}_N^{\mathrm{T}} - \mathbf{c}_B^{\mathrm{T}} \mathbf{B}^{-1} \mathbf{N}) \mathbf{x}_N \\ \text{subject to} \qquad \mathbf{B}^{-1} \mathbf{b} - \mathbf{B}^{-1} \mathbf{N} \mathbf{x}_N \geq \mathbf{0}^m \\ \mathbf{x}_N \geq \mathbf{0}^{n-m} \end{array}$$

- The rewritten program:
- $\Rightarrow \quad \begin{array}{ll} \text{minimize} \quad z = \mathbf{c}_B^{\mathrm{T}} \mathbf{B}^{-1} \mathbf{b} + (\mathbf{c}_N^{\mathrm{T}} \mathbf{c}_B^{\mathrm{T}} \mathbf{B}^{-1} \mathbf{N}) \mathbf{x}_N \quad (3a) \\ \text{subject to} \quad \mathbf{B}^{-1} \mathbf{b} \mathbf{B}^{-1} \mathbf{N} \mathbf{x}_N \geq \mathbf{0}^m \quad (3b) \\ \mathbf{x}_N \geq \mathbf{0}^{n-m} \quad (3c) \end{array}$

- At the basic solution defined by $B \subset \{1, \ldots, n\}$:
 - Each non-basic variable takes the value 0, i.e., $\mathbf{x}_N = \mathbf{0}$
 - The basic variables take the values

$$\mathbf{x}_B = \mathbf{B}^{-1}\mathbf{b} - \mathbf{B}^{-1}\mathbf{N}\mathbf{x}_N = \mathbf{B}^{-1}\mathbf{b}$$

- The value of the objective function is $z = \mathbf{c}_B^{\mathrm{T}} \mathbf{B}^{-1} \mathbf{b}$
- The basic solution is feasible if $\mathbf{B}^{-1}\mathbf{b} \ge \mathbf{0}^m$

The simplex method: Optimality and feasibility and change of basis (Ch. 4.4)

• Optimality condition (for minimization)

The basis *B* is optimal if $\mathbf{c}_N^{\mathrm{T}} - \mathbf{c}_B^{\mathrm{T}} \mathbf{B}^{-1} \mathbf{N} \ge \mathbf{0}^{n-m}$ (marginal values = reduced costs ≥ 0)

If not, choose as *entering* variable $j \in N$ the one with the lowest (negative) value of the reduced cost $c_j - \mathbf{c}_B^T \mathbf{B}^{-1} \mathbf{A}_j$

• Feasibility condition

For all $i \in B$ it holds that $x_i = (\mathbf{B}^{-1}\mathbf{b})_i - (\mathbf{B}^{-1}\mathbf{A}_j)_i x_j$

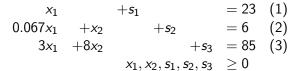
Choose the *leaving* variable $i^* \in B$ according to

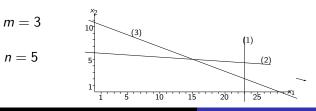
$$i^* = \arg\min_{i\in B} \left\{ rac{(\mathbf{B}^{-1}\mathbf{b})_i}{(\mathbf{B}^{-1}\mathbf{A}_j)_i} \middle| (\mathbf{B}^{-1}\mathbf{A}_j)_i > 0
ight\}$$

Basic feasible solutions, example

• Constraints:

Add slack variables:



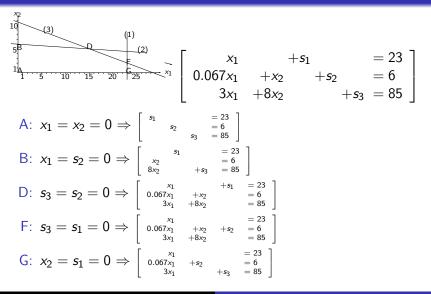


Lecture 3 Linear and Integer Optimization with Applications

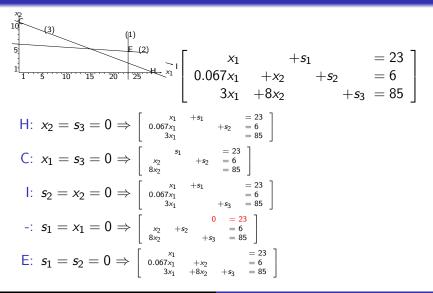
Basic and non-basic variables and solutions

s_1, s_2, x_2	23 -5 <u>1</u> 23 -67	$ \begin{array}{r} 6 \\ 4\frac{1}{9} \\ -4\frac{5}{8} \end{array} $	85 28 ¹ / ₃	x_1, x_2 s_3, x_2	A	yes	
	23	$-4\frac{5}{8}$		<i>s</i> ₃ , <i>x</i> ₂			
s_1, x_1, s_3 s_1, x_2, s_3 x_1, s_2, s_3 x_2, s_2, s_3		$-4\frac{5}{8}$	105		Н	no	
s_1, x_2, s_3 x_1, s_2, s_3 x_2, s_2, s_3	-67		$10\frac{5}{8}$	<i>x</i> ₁ , <i>s</i> ₃	С	no	
x_1, s_2, s_3 x_2, s_2, s_3		90	-185	<i>s</i> ₂ , <i>x</i> ₂	1	no	
x_2, s_2, s_3	23	6	37	s_2, x_1	В	yes	
	23	$4\frac{7}{15}$	16	s_1, x_2	G	yes	
x_1, x_2, s_1	-	-	-	s_1, x_1	-	-	
	15	5	8	<i>s</i> ₂ , <i>s</i> ₃	D	yes	
<i>x</i> ₁ , <i>x</i> ₂ , <i>s</i> ₂	23	2	$2\frac{7}{15}$	<i>s</i> ₁ , <i>s</i> ₃	F	yes	
x_1, x_2, s_3	23	$4\frac{7}{15}$	$-19\frac{11}{15}$	s_1, s_2	Е	no	
	xp C 10 5 B 1 A	(3)	10	□	$\frac{1}{2}$	~ I	

Basic feasible solutions correspond to solutions to the system of equations that fulfil non-negativity



Basic infeasible solutions corresp. to solutions to the system of equations with one or more variables < 0



Basic feasible solutions and the simplex method

- Express the *m* basic variables in terms of the *n m* non-basic variables
- Example: Start at $x_1 = x_2 = 0 \Rightarrow s_1$, s_2 , s_3 are *basic*

$$\begin{bmatrix} x_1 & +\mathbf{s_1} & = 23\\ \frac{1}{15}x_1 & +x_2 & +\mathbf{s_2} & = 6\\ 3x_1 & +8x_2 & +\mathbf{s_3} & = 85 \end{bmatrix}$$

• Express s_1 , s_2 , and s_3 in terms of x_1 and x_2 (*non-basic*):

$$\begin{bmatrix} s_1 = 23 & -x_1 \\ s_2 = 6 & -\frac{1}{15}x_1 & -x_2 \\ s_3 = 85 & -3x_1 & -8x_2 \end{bmatrix}$$

- We wish to maximize the objective function $2x_1 + 3x_2$
- Express the objective in terms of the *non-basic* variables: (maximize) $z = 2x_1 + 3x_2 \iff z - 2x_1 - 3x_2 = 0$

Basic feasible solutions and the simplex method

• The *first basic solution* can be represented as

-z	$+2x_{1}$	$+3x_{2}$				= 0	(0)
	<i>x</i> ₁		+ s 1			= 23	(1)
	$\frac{1}{15}x_1$	$+ x_2$		+ <i>s</i> ₂		= 6	(2)
	$3x_1$	$+8x_{2}$			+ <i>s</i> ₃	= 0 = 23 = 6 = 85	(3)

- Marginal values for increasing the non-basic variables x₁ and x₂ from zero: 2 and 3, resp.
- $\Rightarrow Choose x_2 let x_2 enter the basis DRAW GRAPH!!$
 - One basic variable $(s_1, s_2, \text{ or } s_3)$ must *leave the basis*. Which?
 - The value of x₂ can increase until some basic variable reaches the value 0:

$$\begin{array}{l} (2): s_2 = 6 - x_2 \ge 0 \\ (3): s_3 = 85 - 8x_2 \ge 0 \\ \end{array} \Rightarrow \begin{array}{l} x_2 \le 6 \\ x_2 \le 10\frac{5}{8} \end{array} \end{array} \right\} \Rightarrow \begin{array}{l} s_2 = 0 \text{ when} \\ x_2 = 6 \\ (\text{and } s_3 = 37) \end{array}$$

• s₂ will leave the basis

Change basis through row operations

• Eliminate s₂ from the basis, let x₂ enter the basis using row operations:

-z	$+2x_{1}$	$+3x_{2}$				=	0	(0)
	<i>x</i> ₁		$+s_1$			=	23	(1)
	$\frac{1}{15}x_1$	+ <i>x</i> ₂		$+s_{2}$		=	6	(2)
	$3x_1$	$+8x_{2}$			$+s_3$	=	85	(3)
-z	$+\frac{9}{5}x_1$			$-3s_{2}$		=	-18	$(0) - 3 \cdot (2)$
	<i>x</i> ₁		$+s_{1}$			=	23	$(1) - 0 \cdot (2)$
	$\frac{1}{15}x_1$	$+x_{2}$		$+s_{2}$		=	6	(2)
	$\frac{\frac{1}{15}x_1}{\frac{37}{15}x_1}$			$-8s_{2}$	+ <i>s</i> ₃	=	37	(3)-8.(2)

• Corresponding basic solution: $s_1 = 23$, $x_2 = 6$, $s_3 = 37$.

- Nonbasic variables: $x_1 = s_2 = 0$
- The marginal value of x_1 is $\frac{9}{5} > 0$. Let x_1 enter the basis
- Which one should leave? s_1 , x_2 , or s_3 ?

Change basis ...

-z	$+\frac{9}{5}x_1$			$-3s_{2}$		=	-18	(0)
	x ₁		$+s_1$			=	23	(1)
	$\frac{1}{15}x_1$	$+x_{2}$		$+s_{2}$		=	6	(2)
	$\frac{37}{15}x_1$			$-8s_{2}$	$+s_3$	=	37	(3)

• The value of x₁ can increase until some basic variable reaches the value 0:

$$\begin{array}{l} (1): s_1 = 23 - x_1 \ge 0 & \Rightarrow x_1 \le 23 \\ (2): x_2 = 6 - \frac{1}{15} x_1 \ge 0 & \Rightarrow x_1 \le 90 \\ (3): s_3 = 37 - \frac{37}{15} x_1 \ge 0 & \Rightarrow x_1 \le 15 \end{array} \right\} \Rightarrow \begin{array}{l} s_3 = 0 \text{ when} \\ x_1 = 15 \end{array}$$

- x_1 enters the basis and s_3 leaves the basis
- Perform row operations:

-								
-	- <i>Z</i>			+2.84 <i>s</i> ₂	-0.73 <i>s</i> 3	=	-45	$(0) - (3) \cdot \frac{15}{37} \cdot \frac{9}{5}$
			<i>s</i> ₁	+3.24 <i>s</i> ₂	-0.41 <i>s</i> ₃	=	8	$(1)-(3)\cdot\frac{15}{37}$
		<i>x</i> ₂		$+1.22s_{2}$	-0.03 <i>s</i> ₃	=	5	$ \begin{array}{c} (0)-(3)\cdot\frac{15}{37}\cdot\frac{9}{5}\\ (1)-(3)\cdot\frac{15}{37}\\ (2)-(3)\cdot\frac{15}{37}\cdot\frac{1}{15}\\ \end{array} $
_	<i>x</i> ₁			-3.24 <i>s</i> ₂	$+0.41s_{3}$	=	15	$(3) \cdot \frac{15}{37}$

Change basis ...

- <i>z</i>			$+2.84s_{2}$	-0.73 <i>s</i> 3	=	-45	(0)
		s_1	$+3.24s_{2}$	-0.41 <i>s</i> ₃	=	8	(1)
	<i>x</i> ₂		$+1.22s_{2}$	-0.03 <i>s</i> ₃	=	5	(2)
<i>x</i> ₁			-3.24 <i>s</i> ₂	$+0.41s_{3}$	=	15	(3)

• Let s_2 enter the basis (marginal value > 0)

• The value of s_2 can increase until some basic variable = 0:

$$\begin{array}{l} (1): s_1 = 8 - 3.24 s_2 \ge 0 & \Rightarrow s_2 \le 2.47 \\ (2): x_2 = 5 - 1.22 s_2 \ge 0 & \Rightarrow s_2 \le 4.10 \\ (3): x_1 = 15 + 3.24 s_2 \ge 0 & \Rightarrow s_2 \ge -4.63 \end{array} \right\} \Rightarrow \begin{array}{l} s_1 = 0 \text{ when} \\ s_2 = 2.47 \end{array}$$

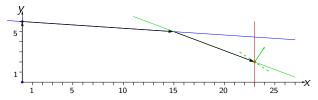
- s_2 enters the basis and s_1 will leave the basis
- Perform row operations:

- <i>z</i>		$-0.87s_1$		-0.37 <i>s</i> ₃	=	-52	$\begin{array}{c} (0)-(1)\cdot\\ (1)\cdot\frac{1}{3.24}\\ (2)-(1)\cdot\\ (3)+(1)\end{array}$	$\frac{2.84}{3.24}$
		0.31 <i>s</i> 1	$+s_2$	-0.12 <i>s</i> ₃	=	2.47	$(1) \cdot \frac{1}{3.24}$	•
	<i>x</i> ₂	-0.37 <i>s</i> ₁		$+0.12s_{3}$	=	2	(2)-(1) ·	$\frac{1.22}{3.24}$
<i>x</i> ₁		$+s_1$			=	23	(3)+(1)	

Optimal basic solution

- <i>z</i>		-0.87 <i>s</i> 1		-0.37 <i>s</i> 3	=	-52
		0.31 <i>s</i> 1	+ <i>s</i> ₂	-0.37 <i>s</i> 3 -0.12 <i>s</i> 3	=	2.47
	<i>x</i> ₂	-0.37 <i>s</i> 1		$+0.12s_{3}$	=	2
<i>x</i> ₁		$+s_1$			=	23

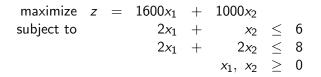
- No marginal value is positive. No improvement can be made
- The optimal basis is given by $s_2 = 2.47$, $x_2 = 2$, and $x_1 = 23$
- Non-basic variables: $s_1 = s_3 = 0$
- Optimal value: z = 52



Summary of the solution course

basis	- <i>z</i>	<i>x</i> ₁	<i>x</i> ₂	<i>s</i> ₁	<i>s</i> ₂	<i>s</i> 3	RHS
-z	1	2	3	0	0	0	0
s_1	0	1	0	1	0	0	23
<i>s</i> ₂	0	0.067	1	0	1	0	6
s 3	0	3	8	0	0	1	85
- <i>z</i>	1	1.80	0	0	-3	0	-18
s_1	0	1	0	1	0	0	23
<i>x</i> ₂	0	0.07	1	0	1	0	6
S 3	0	2.47	0	0	-8	1	37
-z	1	0	0	0	2.84	-0.73	-45
s_1	0	0	0	1	3.24	-0.41	8
<i>x</i> ₂	0	0	1	0	1.22	-0.03	5
<i>x</i> ₁	0	1	0	0	-3.24	0.41	15
-z	1	0	0	-0.87	0	-0.37	-52
<i>s</i> ₂	0	0	0	0.31	1	-0.12	2.47
<i>x</i> ₂	0	0	1	-0.37	0	0.12	2
x_1	0	1	0	1	0	0	23

Solve the lego problem using the simplex method!



Homework!!