MVE165/MMG631 Linear and integer optimization with applications Lecture 4 Linear programming duality and sensitivity analysis

Ann-Brith Strömberg

2014-03-28

A general linear program on "standard form"

A linear program with n non-negative variables, m equality constraints (m < n), and non-negative right hand sides:

maximize
$$z=\sum_{j=1}^n c_j x_j$$
 subject to $\sum_{j=1}^n a_{ij} x_j = b_i, \quad i=1,\ldots,m,$ $x_j \geq 0, \quad j=1,\ldots,n.$

On matrix form it is expressed as:

$$\begin{aligned} \text{maximize} & & z = \mathbf{c}^{\mathrm{T}}\mathbf{x}, \\ \text{subject to} & & \mathbf{A}\mathbf{x} = \mathbf{b}, \\ & & & \mathbf{x} \geq \mathbf{0}^n, \end{aligned}$$

where $\mathbf{x} \in \mathbb{R}^n$, $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^m_+$ ($\mathbf{b} \ge \mathbf{0}^m$), and $\mathbf{c} \in \mathbb{R}^n$.

An "intuitive" derivation of duality

(Ch. 6.1)

► A linear program with optimal value z*

[Draw graph!!]

maximize
$$z := 20x_1 + 18x_2$$
 weights subject to $7x_1 + 10x_2 \le 3600$ (1) v_1 $16x_1 + 12x_2 \le 5400$ (2) v_2 $x_1, x_2 \ge 0$

- ▶ How large can z^* be?
- Compute upper estimates of z*, e.g.
 - ► Multiply (1) by $3 \Rightarrow 21x_1 + 30x_2 \le 10800 \Rightarrow z^* \le 10800$
 - ► Multiply (2) by 1.5 \Rightarrow 24 $x_1 + 18x_2 \le 8100 \Rightarrow z^* \le 8100$
 - ► Combine: $0.6 \times (1) + 1 \times (2) \Rightarrow 20.2x_1 + 18x_2 \le 7560 \Rightarrow z^* \le 7560$
- ▶ Do better than guess—compute *optimal* weights!
- ▶ Value of estimate: $w = 3600v_1 + 5400v_2 \rightarrow min$
- Constraints on weights: $\begin{bmatrix} 7v_1 + 16v_2 & \geq 20 \\ 10v_1 + 12v_2 & \geq 18 \\ v_1, v_2 & \geq 0 \end{bmatrix}$

The best (lowest) possible upper estimate of z^*

minimize
$$w := 3600v_1 + 5400v_2$$
 subject to $7v_1 + 16v_2 \ge 20$ $10v_1 + 12v_2 \ge 18$ $v_1, v_2 \ge 0$

▶ A linear program!

[Draw Graph!!]

It is called the linear programming dual of the original linear program

The lego model – the market problem

Consider the lego problem

maximize
$$z=1600x_1+1000x_2$$
 subject to $2x_1+x_2 \leq 6$ $2x_1+2x_2 \leq 8$ $x_1, x_2 \geq 0$

- Option: Sell bricks instead of making furniture
- $v_1(v_2) =$ price of a large (small) brick
- ▶ Market wish to minimize payment: minimize $6v_1 + 8v_2$
- I sell if prices are high enough:
 - $v_1 + 2v_2 \ge 1600$
 - $v_1 + 2v_2 > 1000$
 - $v_1, v_2 > 0$

- otherwise better to make tables
- otherwise better to make chairs
- prices are naturally non-negative

Linear programming duality

 To each primal linear program corresponds a dual linear program

$$\begin{aligned} & [\mathsf{Primal}] & \mathsf{minimize} & & z = \mathbf{c}^{\mathsf{T}}\mathbf{x}, \\ & \mathsf{subject to} & & \mathbf{A}\mathbf{x} = \mathbf{b}, \\ & & & \mathbf{x} \geq \mathbf{0}^n, \\ & & & & [\mathsf{Dual}] & \mathsf{maximize} & & w = \mathbf{b}^{\mathsf{T}}\mathbf{y}, \\ & & & & & \mathsf{subject to} & & \mathbf{A}^{\mathsf{T}}\mathbf{y} \leq \mathbf{c}. \end{aligned}$$

▶ On component form:

[Primal] minimize
$$z = \sum_{j=1}^{n} c_j x_j$$
 subject to $\sum_{j=1}^{n} a_{ij} x_j = b_i, i = 1, \dots, m,$ $x_j \geq 0, j = 1, \dots, n,$ [Dual] maximize $w = \sum_{j=1}^{n} b_i y_i$ subject to $\sum_{i=1}^{m} a_{ij} y_i \leq c_j, j = 1, \dots, n.$

An example of linear programming duality

► A primal linear program

minimize
$$z = 2x_1 + 3x_2$$

subject to $3x_1 + 2x_2 = 14$
 $2x_1 - 4x_2 \ge 2$
 $4x_1 + 3x_2 \le 19$
 $x_1, x_2 \ge 0$

▶ The corresponding dual linear program

\Leftrightarrow	minimization
\Leftrightarrow	primal program
\Leftrightarrow	dual program
	variables
\Leftrightarrow	≤ 0
\Leftrightarrow	≥ 0
\Leftrightarrow	free
	constraints
\Leftrightarrow	\geq
\Leftrightarrow	\leq
\Leftrightarrow	=
	⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔ ⇔

The dual of the dual of any linear program equals the primal

► Weak duality [Th. 6.1]: Let x be a feasible point in the primal (minimization) and y be a feasible point in the dual (maximization). Then,

$$z = \mathbf{c}^{\mathrm{T}} \mathbf{x} \ge \mathbf{b}^{\mathrm{T}} \mathbf{y} = w$$

- ► Strong duality [Th. 6.3]: In a pair of primal and dual linear programs, if one of them has an optimal solution, so does the other, and their optimal values are equal.
- Complementary slackness [Th. 6.5]:
 If x is optimal in the primal and y is optimal in the dual,
 ⇒ then x^T(c A^Ty) = y^T(b Ax) = 0.
 If x is feasible in the primal, y is feasible in the dual,
 and x^T(c A^Ty) = y^T(b Ax) = 0,
 ⇒ then x and y are optimal for their respective problems.

Relations between primal and dual optimal solutions

primal (dual) problem	\iff	dual (primal) problem
unique and non-degenerate solution	\iff	unique and non-degenerate solution
unbounded solution	\Longrightarrow	no feasible solutions
no feasible solutions	\Longrightarrow	unbounded solution or no feasible solutions
degenerate solution	\iff	alternative solutions

Exercises on duality

HOMEWORK!

▶ Formulate and solve graphically the dual of:

minimize
$$z = 6x_1 + 3x_2 + x_3$$

subject to $6x_1 - 3x_2 + x_3 \ge 2$
 $3x_1 + 4x_2 + x_3 \ge 5$
 $x_1, x_2, x_3 \ge 0$

- Then find the optimal primal solution
- Verify that the dual of the dual equals the primal

Derivation of the simplex method (repetition) (Ch. 4.8)

- $ightharpoonup B = ext{set of basic variables}, N = ext{set of non-basic variables}$
- $\Rightarrow |B| = m \text{ and } |N| = n m$
- ▶ Partition matrix/vectors: $\mathbf{A} = (\mathbf{B}, \mathbf{N}), \mathbf{x} = (\mathbf{x}_B, \mathbf{x}_N), \mathbf{c} = (\mathbf{c}_B, \mathbf{c}_N)$
- ► The matrix B (N) contains the columns of A corresponding to the index set B (N) — Analogously for x and c
- Rewrite the linear program:

$$\begin{bmatrix} \text{minimize } z = \mathbf{c}^{\mathrm{T}} \mathbf{x} \\ \text{subject to} & \mathbf{A} \mathbf{x} = \mathbf{b}, \\ & \mathbf{x} \geq \mathbf{0}^{n} \end{bmatrix} = \begin{bmatrix} \text{minimize } z = \mathbf{c}_{B}^{\mathrm{T}} \mathbf{x}_{B} + \mathbf{c}_{N}^{\mathrm{T}} \mathbf{x}_{N} \\ \text{subject to} & \mathbf{B} \mathbf{x}_{B} + \mathbf{N} \mathbf{x}_{N} = \mathbf{b}, \\ & \mathbf{x}_{B} \geq \mathbf{0}^{m}, \ \mathbf{x}_{N} \geq \mathbf{0}^{n-m} \end{bmatrix}$$

Substitute:
$$\mathbf{x}_B = \mathbf{B}^{-1}\mathbf{b} - \mathbf{B}^{-1}\mathbf{N}\mathbf{x}_N \Longrightarrow$$

minimize $z = \mathbf{c}_B^{\mathrm{T}}\mathbf{B}^{-1}\mathbf{b} + [\mathbf{c}_N^{\mathrm{T}} - \mathbf{c}_B^{\mathrm{T}}\mathbf{B}^{-1}\mathbf{N}]\mathbf{x}_N$

subject to $\mathbf{B}^{-1}\mathbf{b} - \mathbf{B}^{-1}\mathbf{N}\mathbf{x}_N \ge \mathbf{0}^m$,
 $\mathbf{x}_N > \mathbf{0}^{n-m}$

Optimality and feasibility (repetition)

▶ Optimality condition (for minimization)

The basis B is optimal if $\mathbf{c}_N^{\mathrm{T}} - \mathbf{c}_B^{\mathrm{T}} \mathbf{B}^{-1} \mathbf{N} \geq \mathbf{0}^{n-m}$ (marginal values = reduced costs ≥ 0)

If not, choose as entering variable $j \in N$ the one with the largest negative value of the reduced cost $c_j - \mathbf{c}_B^{\mathrm{T}} \mathbf{B}^{-1} \mathbf{A}_j$

Feasibility condition

For all
$$i \in B$$
 it holds that $x_i = (\mathbf{B}^{-1}\mathbf{b})_i - (\mathbf{B}^{-1}\mathbf{A}_j)_i x_j$

Choose the leaving variable $i^* \in B$ according to

$$i^* = \arg\min_{i \in B} \left\{ \frac{(\mathbf{B}^{-1}\mathbf{b})_i}{(\mathbf{B}^{-1}\mathbf{A}_j)_i} \middle| (\mathbf{B}^{-1}\mathbf{A}_j)_i > 0 \right\}$$

In the simplex tableau, we have

basis	-z	\mathbf{x}_B	x _N	S	RHS
-z	1	0	$\mathbf{c}_{N}^{\mathrm{T}} - \mathbf{c}_{B}^{\mathrm{T}} \mathbf{B}^{-1} \mathbf{N}$	$-\mathbf{c}_B^{\mathrm{T}}\mathbf{B}^{-1}$	$-\mathbf{c}_B^{\mathrm{T}}\mathbf{B}^{-1}\mathbf{b}$
x _B	0	ı	$B^{-1}N$	B^{-1}	$B^{-1}b$

- ▶ s denotes possible slack variables (columns for s are copies of certain columns for (x_B, x_N))
- ► The computations performed by the simplex algorithm involve matrix inversions and updates of these
- ▶ A non-basic (basic) variable enters (leaves) the basis \Rightarrow one column, \mathbf{A}_j , of \mathbf{B} is replaced by another, \mathbf{A}_k
- ▶ Row operations \Leftrightarrow Updates of \mathbf{B}^{-1} (and $\mathbf{B}^{-1}\mathbf{N}$, $\mathbf{B}^{-1}\mathbf{b}$, and $\mathbf{c}_{B}^{\mathrm{T}}\mathbf{B}^{-1}$)
- ⇒ Efficient numerical computations are crucial for the performance of the simplex algorithm

- How does the optimum change when the right hand sides (resources, e.g.) change?
- ▶ When the objective coefficients (prices, e.g.) change?
- Assume that the basis B is optimal:

$$\label{eq:subject_to_subject_to} \begin{array}{ll} \text{minimize} & z = \mathbf{c}_B^{\mathrm{T}} \mathbf{B}^{-1} \mathbf{b} + [\mathbf{c}_N^{\mathrm{T}} - \mathbf{c}_B^{\mathrm{T}} \mathbf{B}^{-1} \mathbf{N}] \mathbf{x}_N \\ \text{subject to} & \mathbf{B}^{-1} \mathbf{b} - \mathbf{B}^{-1} \mathbf{N} \mathbf{x}_N \geq \mathbf{0}^m, \\ & \mathbf{x}_N \geq \mathbf{0}^{n-m} \end{array}$$

- ▶ The shadow price [Def. 5.3] of a constraint is defined as the change in the optimal value as a function of the (marginal) change in the RHS. It equals the optimal value of the corresponding dual variable.
- ▶ Suppose **b** changes to $\mathbf{b} + \Delta \mathbf{b}$
- ⇒ New optimal value:

$$z^{\text{new}} = \mathbf{c}_B^{\text{T}} \mathbf{B}^{-1} (\mathbf{b} + \Delta \mathbf{b}) = z + \mathbf{c}_B^{\text{T}} \mathbf{B}^{-1} \Delta \mathbf{b}$$

- ▶ The current basis is feasible if $\mathbf{B}^{-1}(\mathbf{b} + \Delta \mathbf{b}) \geq 0$
- ▶ If not: negative values will occur in the RHS of the simplex tableau
- ► The reduced costs are unchanged (positive, at optimum)
 ⇒ this can be resolved using the dual simplex method

Consider the linear program

minimize
$$z = -x_1 - 2x_2$$
 subject to $-2x_1 + x_2 \le 2$ $-x_1 + 2x_2 \le 7$ Draw graph!! $x_1 \le 3$ $x_1, x_2 \ge 0$

► The optimal solution is given by

basis	-z	x_1	x_2	s_1	<i>s</i> ₂	<i>s</i> ₃	RHS
-z	1	0	0	0	1	2	13
<i>X</i> ₂	0	0	1	0	$\frac{1}{2}$	$\frac{1}{2}$	5
x_1	0	1	0	0	Ō	$\overline{1}$	3
<i>s</i> ₁	0	0	0	1	$-\frac{1}{2}$	<u>3</u> 2	3

Change the right hand side according to

$$\begin{array}{lll} \text{minimize} & z = & -x_1 & -2x_2 \\ \text{subject to} & & -2x_1 & +x_2 & \leq 2 \\ & & -x_1 & +2x_2 & \leq 7+\delta \\ & & x_1 & & \leq 3 \\ & & x_1, x_2 & \geq 0 \end{array}$$

▶ The change in the right hand side is given by $\mathbf{B}^{-1}(0,\delta,0)^{\mathrm{T}}=(\frac{1}{2}\delta,0,-\frac{1}{2}\delta)^{\mathrm{T}}\Rightarrow$ new optimal tableau:

basis	-z	<i>x</i> ₁	<i>x</i> ₂	<i>s</i> ₁	<i>s</i> ₂	s ₃	RHS
-z	1	0	0	0	1	2	$13 + \delta$
<i>X</i> ₂	0	0	1	0	$\frac{1}{2}$	$\frac{1}{2}$	$5+\frac{1}{2}\delta$
x_1	0	1	0	0	Ō	$\bar{1}$	3
s_1	0	0	0	1	$-\frac{1}{2}$	<u>3</u>	$3-\frac{1}{2}\delta$

▶ The current basis is feasible if $-10 < \delta < 6$

▶ Suppose $\delta = 8$:

basis	-z	x_1	<i>X</i> ₂	s_1	s ₂	s ₃	RHS
-z	1	0	0	0	1	2	21
X ₂	0	0	1	0	$\frac{1}{2}$	$\frac{1}{2}$	9
x_1	0	1	0	0	Ō	ī	3
<i>s</i> ₁	0	0	0	1	$-\frac{1}{2}$	<u>3</u> 2	-1

- Dual simplex iteration:
- $s_1 = -1$ has to leave the basis
- ► Find the smallest ratio between reduced costs (for non-basic columns) and (negative) elements in the "s₁-row" (to stay optimal)
- ▶ s₂ will enter the basis **New optimal** tableau:

basis	-z	x_1	<i>x</i> ₂	s_1	s ₂	s 3	RHS
-z	1	0	0	2	0	5	19
<i>X</i> ₂	0	0	1	1	0	2	8
x_1	0	1	0	0	0	1	3
<i>s</i> ₂	0	0	0	-2	1	-3	2

Changes in the objective coefficients

► The reduced cost of a non-basic variable defines the change in the objective value when the value of the corresponding variable is (marginally) increased.

The basis
$$B$$
 is optimal if $\mathbf{c}_N^{\mathrm{T}} - \mathbf{c}_B^{\mathrm{T}} \mathbf{B}^{-1} \mathbf{N} \geq \mathbf{0}^{n-m}$ (marginal values = reduced costs ≥ 0)

- ▶ Suppose **c** changes to $\mathbf{c} + \Delta \mathbf{c}$
- The new optimal value:

$$z^{\text{new}} = (\mathbf{c}_B + \Delta \mathbf{c}_B)^{\text{T}} \mathbf{B}^{-1} \mathbf{b} = z + \Delta \mathbf{c}_B^{\text{T}} \mathbf{B}^{-1} \mathbf{b}$$

- ► The current basis is optimal if $(\mathbf{c}_N + \Delta \mathbf{c}_N)^{\mathrm{T}} (\mathbf{c}_B + \Delta \mathbf{c}_B)^{\mathrm{T}} \mathbf{B}^{-1} \mathbf{N} \ge \mathbf{0}$
- ▶ If not: more simplex iterations to find the optimal solution

Changes in the objective coefficients

Change the objective according to

$$\begin{array}{llll} \text{minimize} & z = & -x_1 & +(-2+\delta)x_2 \\ \text{subject to} & & -2x_1 & +x_2 & \leq 2 \\ & & -x_1 & +2x_2 & \leq 7 \\ & & x_1 & & \leq 3 \\ & & x_1, x_2 & \geq 0 \end{array}$$

► The changes in the reduced costs are given by $-(\delta,0,0)\mathbf{B}^{-1}\mathbf{N}=(-\frac{1}{2}\delta,-\frac{1}{2}\delta)\Rightarrow$ new optimal tableau:

basis	-z	<i>x</i> ₁	<i>X</i> 2	s_1	s ₂	<i>5</i> 3	RHS
-z	1	0	0	0	$1-\frac{1}{2}\delta$	$2-\frac{1}{2}\delta$	$13-5\delta$
<i>x</i> ₂	0	0	1	0	$\frac{1}{2}$	$\frac{1}{2}$	5
x_1	0	1	0	0	Ō	$\bar{1}$	3
<i>s</i> ₁	0	0	0	1	$-\frac{1}{2}$	<u>3</u> 2	3

▶ The current basis is optimal if $\delta \leq 2$

Changes in the objective coefficients

▶ Suppose $\delta = 4$: new tableau:

basis	-z	x_1	<i>x</i> ₂	s_1	<i>s</i> ₂	<i>s</i> ₃	RHS
-z	1	0	0	0	-1	0	-7
<i>x</i> ₂	0	0	1	0	$\frac{1}{2}$	$\frac{1}{2}$	5
x_1	0	1	0	0	0	1	3
<i>s</i> ₁	0	0	0	1	$-\frac{1}{2}$	<u>3</u> 2	3

Let s_2 enter and x_2 leave the basis. New optimal tableau:

basis	-z	x_1	<i>x</i> ₂	s_1	<i>s</i> ₂	<i>s</i> ₃	RHS
-z	1	0	2	0	0	1	3
s ₂	0	0	2	0	1	1	10
x_1	0	1	0	0	0	1	3
<i>s</i> ₁	0	0	1	1	0	2	8