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A general linear program on “standard form”

> A linear program with n non-negative variables, m equality
constraints (m < n), and non-negative right hand sides:

n
maximize z = Z G X;
j=1
n
subject to Za,-jxj- = b;, i=1...,m,
j=1
xi > 0, j=1,...,n

» On matrix form it is expressed as:

maximize z=c"x,
subject to Ax = b,
x> 0"

where x € R”, A€ R™" b € RT (b>07), and c € R".
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An “intuitive” derivation of duality (Ch. 6.1)

» A linear program with optimal value z* [DRAW GRAPH!!]
maximize z:= 20x; +18x» weights
subject to 7x1 +10x, < 3600 (1) Vi

16x; +12x, < 5400 (2) Vo
x1,x2 >0

» How large can z* be?

v

Compute upper estimates of z*, e.g.

» Multiply (1) by 3 = 21x; + 30x, < 10800 = z* < 10800

» Multiply (2) by 1.5 = 24x; + 18x; < 8100 = z* <8100

» Combine: 0.6x(1)+1x(2) = 20.2x;4+18x, <7560 = z* <7560
Do better than guess—compute optimal weights!
Value of estimate: w = 3600v; + 5400v>, — min

Tvi +16v, > 20
Constraints on weights: | 10v; + 12v, > 18
vi,va >0

v

v

v
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The best (lowest) possible upper estimate of z*

minimize w := 3600v; + 5400w

subject to Tvi + 16v, > 20
10vy + 12v, > 18
vi,vo. >0
» A linear program! [DRAW GRAPH!!]

> |t is called the linear programming dual of the original linear
program

Lecture 4 Linear and integer optimization with applications



The lego model — the market problem

» Consider the lego problem

maximize z = 1600x; + 1000x

subject to 2x1 + xx < 6
2x1  + 2% < 8
x1, 2 =2 0
» Option: Sell bricks instead of making furniture
> vi(v2) = price of a large (small) brick
» Market wish to minimize payment:  minimize 6vi 4 8wy
» | sell if prices are high enough:
» 2vy +2v, > 1600 — otherwise better to make tables
> v +2v, > 1000 — otherwise better to make chairs
> v, >0 — prices are naturally non-negative
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Linear programming duality

» To each primal linear program corresponds a dual linear

program
[Primal] minimize z=c"x,
subject to Ax =b,
x>0"
[Dual] maximize w=Db"y,

subject to A’y <c.

» On component form:
[Primal] minimize z =737, ¢x

j
subject to ZJ'-’:I ajxj = by, i=1,...,m,
Xj > 07 ./ = 1’ , 11,
[Dual] maximize w =3 ", biy;
subject to Smiajyi < ¢, j=1,...,n.
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An example of linear programming duality

» A primal linear program

minimize z= 2x; +3x
subject to 3x1 +2x =14
2x1 —A4xp > 2
4X1 —|—3X2 < 19
X1, X2 > 0

» The corresponding dual linear program

maximize w = 14y; +2y, +19y3

subject to 3y1 +2y0  +4y3 <2
2y7 —4y>  +3y3 <3

y1 free,

y2 >0,

y3 <0
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Rules for constructing the dual program

maximization minimization
dual program primal program
primal program < dual program

T

constraints variables
> <0
< & >0
= free
variables constraints
>0 < >
<0 < <
free & =

The dual of the dual of any linear program equals the primal
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Duality properties (Ch. 6.3)

» Weak duality [Th. 6.1]:
Let x be a feasible point in the primal (minimization) and y
be a feasible point in the dual (maximization). Then,

z=c'x>b'y=w

» Strong duality [Th. 6.3]:
In a pair of primal and dual linear programs, if one of them
has an optimal solution, so does the other, and their optimal
values are equal.
» Complementary slackness [Th. 6.5]:
If x is optimal in the primal and y is optimal in the dual,
= then x"(c — ATy) = y"(b — Ax) = 0.
If x is feasible in the primal, y is feasible in the dual,
and x"(c — ATy) =y"(b—- Ax) =0,
= then x and y are optimal for their respective problems.
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Relations between primal and dual optimal solutions

primal (dual) problem <= dual (primal) problem

unique and = unique and
non-degenerate solution non-degenerate solution
unbounded solution = no feasible solutions
no feasible solutions =—>  unbounded solution or
no feasible solutions
degenerate solution — alternative solutions
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Exercises on duality

HOMEWORK!

» Formulate and solve graphically the dual of:

minimize z= 6x; +3x -+x3
subject to 6x; —3x2 +x3 >2
3x1 +4x2 4+x3 >5
X1, X2, X3 > 0

» Then find the optimal primal solution

» Verify that the dual of the dual equals the primal
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Derivation of the simplex method (repetition) (Ch. 4.8)

» B = set of basic variables, N = set of non-basic variables

= |Bl=mand [N|=n—m

» Partition matrixfvectors: A=(B,N), x=(xg,xy), c=(cg, cy)

» The matrix B (N) contains the columns of A corresponding
to the index set B (N) — Analogously for x and ¢

> Rewrite the linear program:

minimize z = c"x minimize z = cgXxg + CyXN
subject to Ax =b,| = | subject to Bxg + Nxy =b,
x>0 xg > 07, xy > 077"

» Substitute: xg = B7'b — B~ INxy =
minimize z = c5B7'b + [c} — cEB !N]xy
subject to B 'b— B !Nxy > 07,
XN Z On—m
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Optimality and feasibility (repetition)

» Optimality condition (for minimization)

The basis B is optimal if ¢} — c5B~IN > 0"~™
(marginal values = reduced costs > 0)

If not, choose as entering variable j € N the one with the

largest negative value of the reduced cost ¢; — cTBB_lAJ-
» Feasibility condition

For all i € B it holds that x; = (B7!b); — (B71A;);x

Choose the leaving variable i* € B according to

-k . (B_lb)i -1
i :argriglg{m (B7™Aj)i >0
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In the simplex tableau, we have

basis | —z xg XN s RHS
—z | 1 0 cy—ctB'N| ;B! |—cE5B'b

xg | 0 1 B-IN B! B~'b

» s denotes possible slack variables (columns for s are copies of
certain columns for (xg,xy))

» The computations performed by the simplex algorithm involve

matrix inversions and updates of these

A non-basic (basic) variable enters (leaves) the basis = one

column, A;, of B is replaced by another, Ay

» Row operations <> Updates of B! (and B™!N, B~!b, and
c;B1)

= Efficient numerical computations are crucial for the
performance of the simplex algorithm

v
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Sensitivity analysis (Ch. 5)

v

How does the optimum change when the right hand sides
(resources, e.g.) change?

v

When the objective coefficients (prices, e.g.) change?

v

Assume that the basis B is optimal:

minimize z=c5B7'b + [cy — c5B!N]xy
subject to B~'b— B Nxy > 07,
XN 2 On—m

v

Xg = B-1b— B_lNXN
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Changes in the right hand side coefficients

» The shadow price [Def. 5.3] of a constraint is defined as the
change in the optimal value as a function of the (marginal)
change in the RHS. It equals the optimal value of the
corresponding dual variable.

» Suppose b changes to b + Ab

= New optimal value:

z"" = cgB (b + Ab) = z+ cgB ' Ab

» The current basis is feasible if B~1(b + Ab) >0

> If not: negative values will occur in the RHS of the simplex
tableau

» The reduced costs are unchanged (positive, at optimum)
= this can be resolved using the dual simplex method
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Changes in the right hand side coefficients

» Consider the linear program

minimize z= —x1 —2x
subject to —2x1  +x0 <2
—x1 +2x <7
DRrAW GRAPH!! X1 <3
X1, X2 Z 0

» The optimal solution is given by

basis | —z x3 x» s1 s s3| RHS
—z| 1 0 0 0 1 2] 13
x| 0 0 1 0 % 1 5
x| 01 0 0 0 1 3
s| 0 0 0 1 -1 23 3
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Changes in the right hand side coefficients

» Change the right hand side according to

minimize z= —x1 —2x
subject to —2x1 +x <2
—x1 +2x0 <T7+9
X1 < 3

x;,x2 >0

» The change in the right hand side is given by
B~1(0,6,0)T = (%5, 0, —%5)T = new optimal tableau:

basis | —z x; x» s s s3| RHS
—z| 1 0 0 0 1 2][13+9¢
x| 0 0 1 0 % Zl5+1%
x| 0 1 0 0 0 1]3
ss|] 00 0 1 —% 32|3-3§

» The current basis is feasible if —10 < § <6
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Changes in the right hand side coefficients

» Suppose § = 8:

basis | —z x1 x» s s s3| RHS
-z 1 0 0 O 1 2 21
X2 0 0 1 o0 % % 9
X1 0O 1 0 O 0 1 3
ss/] 0 0 0 1 -1 3| -1
» Dual simplex iteration:
» s; = —1 has to leave the basis

» Find the smallest ratio between reduced costs (for non-basic
columns) and (negative) elements in the “s;-row” (to stay
optimal)

> sp will enter the basis — New optimal tableau:

basis | —z x1 x» s s s3| RHS
—z 1 0 0 2 0 5 19
Xo O o 1 1 0 2 8

X1 0 1 0 0 o0 1 3

S> o 0 o0 -2 1 -3 2
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Changes in the objective coefficients

» The reduced cost of a non-basic variable defines the change in
the objective value when the value of the corresponding
variable is (marginally) increased.

The basis B is optimal if c§ — c5B™IN > 0"~ (marginal
values = reduced costs > 0)

» Suppose ¢ changes to c + Ac

» The new optimal value:
2"V = (cg + Acg)"B7b =z + AcEB™'b

» The current basis is optimal if
(CN + ACN)T — (CB + ACB)TB_lN >0

» If not: more simplex iterations to find the optimal solution
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Changes in the objective coefficients

» Change the objective according to

minimize z= —x; +(—2+)x
subject to —2x1 +x <2
—X1 +2x <7
X1 < 3

X1, X2 Z 0

> The changes in the reduced costs are given by
—(0,0,0)B7IN = (—16, —16) = new optimal tableau:

basis | —z x31 x» s S S3 RHS
-z 1 0 0 0 1-30 2—36|13-50
x| 0 0 1 0 3 > |5
x| 0 1 0 0 0 1 |3
s|] 0 0 0 1 -1 3 |3
2
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Changes in the objective coefficients

» Suppose § = 4: new tableau:

basis | —z x3 x» s1 s s3| RHS
-z| 1 0 0 0 -1 0] -7
x| 0 0 1 0 % 1 5
x| 01 0 0 0 1 3
s/ 0 0 0 1 -1 3 3

> Let sp enter and x» leave the basis. New optimal tableau:

basis | —z x1 x> s1 s s3| RHS
—z 1 0 2 0 0 1 3
S 0 0 2 0 1 1 10

X1 0 1. 0 0 0 1 3

s1 0O 0o 1 1 0 2 8
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