MVE165/MMG631 Linear and integer optimization with applications Lecture 5 Discrete optimization models and applications; complexity

Ann-Brith Strömberg

2014-04-01

Lecture 5 Linear and integer optimization with applications

Variables

- Linear programming (LP) uses continuous variables: $x_{ij} \ge 0$
- Integer linear programming (ILP) use also integer, binary, and discrete variables
- If both continuous and integer variables are used in a program, it is called a *mixed integer (linear) program (MILP)*

Constraints

- In an ILP (or MILP) it is possible to model linear constraints, but also logical relations as, e.g. if-then and either-or
- This is done by introducing additional binary variables and additional constraints

Mixed integer modelling-fixed charges

- Send a truck \Rightarrow Start-up cost f > 0
- Load bread loafs \Rightarrow cost p > 0 per loaf
- x = # bread loafs to transport from bakery to store

► Cost function
$$c(x) = \begin{cases} 0 & \text{if } x = 0 \\ f + px & \text{if } 0 < x \le M \end{cases}$$

• The function $c : \mathbb{R}_+ \mapsto \mathbb{R}_+$ is *nonlinear* and *discontinuos*

Integer linear programming modelling—fixed charges

• Let y = # trucks to send (here y equals 0 or 1)

• Replace
$$c(x)$$
 by $fy + px$

• Constraints: $0 \le x \le My$ and $y \in \{0, 1\}$

New model:
$$\begin{bmatrix}
\min fy + px \\
s.t. \quad x - My \leq 0 \\
x \geq 0 \\
y \in \{0,1\}
\end{bmatrix}$$
 $y = 0 \Rightarrow x = 0 \Rightarrow fy + px = 0$
 $y = 1 \Rightarrow x \leq M \Rightarrow fy + px = f + px$
 $x > 0 \Rightarrow y = 1 \Rightarrow fy + px = f + px$
 $x > 0 \Rightarrow y = 0$
But: Minimization will push y to zero!

Discrete alternatives

- Suppose:
 either x₁ + 2x₂ ≤ 4 or 5x₁ + 3x₂ ≤ 10, and x₁, x₂ ≥ 0 must hold
 Not a convex set
- Let $M \gg 1$ and define $y \in \{0, 1\}$

$$\Rightarrow \text{ New constraint set:} \begin{bmatrix} x_1 + 2x_2 & -My & \leq & 4\\ 5x_1 + 3x_2 & -M(1-y) & \leq & 10\\ & y & \in & \{0,1\}\\ x_1, x_2 & & \geq & 0 \end{bmatrix}$$

$$\blacktriangleright y = \begin{cases} 0 \Rightarrow x_1 + 2x_2 \le 4 \text{ must hold} \\ 1 \Rightarrow 5x_1 + 3x_2 \le 10 \text{ must hold} \end{cases}$$

Exercises: Homework

- 1. Suppose that you are interested in choosing from a set of investments $\{1, \ldots, 7\}$ using 0-1 variables. Model the following constraints.
 - $1.1\,$ You cannot invest in all of them
 - $1.2\,$ You must choose at least one of them
 - 1.3 Investment 1 cannot be chosen if investment 3 is chosen
 - 1.4 Investment 4 can be chosen only if investment 2 is also chosen
 - $1.5\,$ You must choose either both investment 1 and 5 or neither
 - 1.6 You must choose either at least one of the investments 1, 2 and 3 or at least two investments from 2, 4, 5 and 6
- 2. Formulate the following as mixed integer progams

2.1
$$u = \min\{x_1, x_2\}$$
, assuming that $0 \le x_j \le C$ for $j = 1, 2$
2.2 $v = |x_1 - x_2|$ with $0 \le x_j \le C$ for $j = 1, 2$
2.3 The set $X \setminus \{x^*\}$ where $X = \{x \in Z^n | Ax \le b\}$ and $x^* \in X$

Linear programming: A small example

- Optimal solution: $(x^*, y^*) = (5\frac{1}{4}, 4\frac{3}{4})$
- Optimal objective value: 14³/₄

Integer linear programming: A small example

- What if the variables are forced to be integral?
- Optimal solution: (x*, y*) = (6, 4)
- Optimal objective value: $14 < 14\frac{3}{4}$
- The optimal value decreases (possibly constant) when the variables are restricted to have integral values

ILP: Solution by the branch–and–bound algorithm (e.g., Cplex, XpressMP, or GLPK) (Ch. 15.1–15.2)

- ▶ Relax integrality requirements ⇒ linear, continuous problem ⇒ (x̄, ȳ) = (5¼, 4¾), z̄ = 14¾
- Search tree: branch over fractional variable values

$$\overline{y}) = (5, 4\frac{2}{3}), \overline{z} = 14\frac{1}{3} \quad \text{fractional}$$

$$x \le 5 \quad x \ge 6$$
fractional
$$y \le 4 \quad y \ge 5 \quad \text{integer}$$
integer not feasible
$$(\underline{x}, \underline{y}) = (6, 4), \underline{z} = 14$$

$$(\underline{x}, \underline{y}) = (5, 4), \underline{z} = 13$$

The knapsack problem—budget constraints (Ch. 13.2)

 Select an optimal collection of objects or investments or projects ...

• c_j = benefit of choosing object $j, j = 1, \ldots, n$

Limits on the budget

•
$$a_j = \text{cost of object } j, j = 1, \dots, n$$

▶ b = total budget

► Variables:
$$x_j = \begin{cases} 1, & \text{if object } j \text{ is chosen}, \\ 0, & \text{otherwise}. \end{cases}$$
 $j = 1, ..., n$

> Objective function: max ∑_{j=1}ⁿ c_jx_j
 > Budget constraint: ∑_{j=1}ⁿ a_jx_j ≤ b
 > Binary variables: x_j ∈ {0,1}, j = 1,..., n

A small knapsack instance

 $\begin{array}{rll} z_1^* = \max & 213x_1 + 1928x_2 + 11111x_3 + 2345x_4 + 9123x_5 \\ \text{subject to} & 12223x_1 + 12224x_2 + 36674x_3 + 61119x_4 + 85569x_5 & \leq & 89 \ 643 \ 482 \\ & x_1, \ldots, x_5 & \geq & 0, \text{integer} \end{array}$

• Optimal solution $\mathbf{x}^* = (0, 1, 2444, 0, 0), z_1^* = 27\ 157\ 212$

- Cplex finds this solution in 0.015 seconds
- The equality version

 $\begin{array}{rll} z_2^* = \max & 213x_1 + 1928x_2 + 11111x_3 + 2345x_4 + 9123x_5 \\ \text{subject to} & 12223x_1 + 12224x_2 + 36674x_3 + 61119x_4 + 85569x_5 &= 89\ 643\ 482 \\ & x_1, \ldots, x_5 &\geq 0, \text{integer} \end{array}$

• Optimal solution $\mathbf{x}^* = (7334, 0, 0, 0, 0), z_2^* = 1\ 562\ 142$

• Cplex computations interrupted after 1700 sec. ($\approx \frac{1}{2}$ hour)

- No integer solution found
- Best upper bound found: 25 821 000
- 55 863 802 branch-and-bound nodes visited
- Only one feasible solution exists!

Computational complexity

- Mathematical insight yields successful algorithms
- Example: Assignment problem: Assign *n* persons to *n* jobs.
- # feasible solutions: $n! \Rightarrow$ Combinatorial explosion
- An algorithm \exists that solves this problem in time $\mathcal{O}(n^4) \propto n^4$
- Binary knapsack: O(2ⁿ)
- Complete enumeration of all solutions is not efficient

n	2	5	8	10	100	1000
<i>n</i> !	2	120	40000	3600000	$9.3 \cdot 10^{157}$	$4.0 \cdot 10^{2567}$
2 ⁿ	4	32	256	1024	$1.3\cdot 10^{30}$	$1.1 \cdot 10^{301}$
n ⁴	16	625	4100	10000	10000000	$1.0\cdot 10^{12}$
(<i>n</i> log <i>n</i>	0.6	3.5	7.2	10	200	3000)

• (Continuous knapsack (sorting of $\frac{c_j}{a_i}$): $\mathcal{O}(n \log n)$)

(Ch. 13.8)

- A number (n) of items and a cost for each item
- A number (m) of subsets of the n items
- Find a selection of the items such that each subset contains at least one selected item and such that the total cost for the selected items is minimized

(Ch. 13.8)

Mathematical formulation:

$$\begin{array}{rll} \mbox{min} & \mbox{c}^{\rm T} \mbox{x} \\ \mbox{subject to} & \mbox{A} \mbox{x} & \geq \mbox{1} \\ \mbox{x} & \mbox{binary} \end{array}$$

- $\mathbf{c} \in \mathbb{R}^n$ and $\mathbf{1} = (1, \dots, 1)^{\mathrm{T}} \in \mathbb{R}^m$ are constant vectors
- $\mathbf{A} \in \mathbb{R}^{m \times n}$ is a matrix with entries $a_{ij} \in \{0, 1\}$
- $\mathbf{x} \in \mathbb{R}^n$ is the vector of variables
- \blacktriangleright Related models: set partitioning (Ax = 1), set packing (Ax \leq 1)

Example: Installing security telephones

- The road administration wants to install emergency telephones such that each street has access to at least one phone
- It is logical to place the phones at street crossings
- Each crossing has an installation cost: $\mathbf{c} = (2, 2, 3, 4, 3, 2, 2, 1)$
- Find the cheapest selection of crossings to provide all streets with phones

Define variables and constraints

Installing security telephones: Mathematical model

- Binary variables for each crossing: x_j = 1 if a phone is installed at j, x_j = 0 otherwise.
- For each street, introduce a constraint saying that a phone should be placed at—at least—one of its crossings:

 ▶ Objective function: min 2x₁ + 2x₂ + 3x₃ + 4x₄ + 3x₅ + 2x₆ + 2x₇ + x₈
 ▶ An optimal solution: x₂ = x₅ = x₆ = x₇ = 1,

$$x_1 = x_3 = x_4 = x_8 = 0$$
. Objective value: 9.

More modelling examples

(Ch. 13.3)

- Given three telephone companies A, B and, C which charge a fixed start-up price of 16, 25 and, 18, respectively
- For each minute of call-time A, B, and, C charge 0.25, 0.21 and, 0.22
- We want to phone 200 minutes. Which company should we choose?
- x_i = number of minutes called by $i \in \{A, B, C\}$
- ▶ Binary variables y_i = 1 if x_i > 0, y_i = 0 otherwise (pay start-up price only if calls are made with company i)
- Mathematical model

- We wish to process three jobs on one machine
- Each job j has a processing time p_j, a due date d_j, and a penalty cost c_j if the due date is missed
- How should the jobs be scheduled to minimize the total penalty cost?

ļ	Processing	Due date	Late penalty
Job	time (days)	(days)	\$/day
1	5	25	19
2	20	22	12
3	15	35	34

Model on the board!

The assignment model

(Ch. 13.5)

Assign each task to one resource, and each resource to one task

- Linear cost c_{ij} for assigning task i to resource j, $i, j \in \{1, \dots, n\}$
- Variables: $x_{ij} = \begin{cases} 1, & \text{if task } i \text{ is assigned to resource } j \\ 0, & \text{otherwise} \end{cases}$

min

subject to

$$\sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_{ij}$$

$$\sum_{j=1}^{n} x_{ij} = 1, \quad i = 1, \dots, n$$

$$\sum_{i=1}^{n} x_{ij} = 1, \quad j = 1, \dots, n$$

$$x_{ij} \ge 0, \quad i, j = 1, \dots, n$$

The assignment model

c_{11}	c ₁₂ (c ₁₃			C _{1n}
c_{21}	c 22	C ₂₃			C2n
c ₃₁	C32	C33			C3n
[[[
			 [
c_{n1}	c _{n2} (с _{п3}		(- Cnn

- This integer linear model has integral extreme points, since it can be formulated as a network flow problem
- Therefore, it can be efficiently solved using specialized (network) linear programming techniques
- Even more efficient special purpose (primal-dual-graph-based) algorithms exist

The travelling salesperson problem (TSP) (Ch. 13.10)

- Given n cities and connections between all cities (distances on each connection)
- Find shortest tour that passes through all the cities

- A problem that is very easy to describe and understand but very difficult to solve (combinatorial explosion)
- ► ∃ different versions of TSP: Euclidean, metric, symmetric, ...

An ILP formulation of the TSP problem

- Let the distance from city i to city j be d_{ij}
- Introduce binary variables x_{ij} for each connection
- Let $V = \{1, \ldots, n\}$ denote the set of nodes (cities)

$$\begin{array}{rll} \min & \sum\limits_{i \in V} \sum\limits_{j \in V} d_{ij} x_{ij}, \\ \text{s.t.} & \sum\limits_{j \in V} x_{ij} &= 1, \quad i \in V, \\ & \sum\limits_{i \in V} x_{ij} &= 1, \quad j \in V, \\ & \sum\limits_{i \in U, j \in V \setminus U} x_{ij} &\geq 1, \quad \forall U \subset V : 2 \leq |U| \leq |V| - 2, \quad (3) \\ & x_{ij} \quad \text{binary} \quad i, j \in V \end{array}$$

 Cf. the assignment problem
 Enter and leave each city exactly once ⇔ (1) and (2) DRAW!
 Constraints (3): subtour elimination
 Alternative formulation of (3): ∑_{(i,j)∈U} x_{ij} ≤ |U| − 1, ∀U ⊂ V : 2 ≤ |U| ≤ |V| − 2