MVE165/MMG631 Linear and integer optimization with applications Lecture 6a Theory and algorithms for discrete optimization models

Ann-Brith Strömberg

2014-04-04

(Ch. 14.1)

Enumeration

- Implicit enumeration: Branch–and–bound
- Relaxations
 - Decomposition methods: Solve simpler problems repeatedly
 - Add valid inequalities to an LP "cutting plane methods"
 - Lagrangian relaxation
- Heuristic algorithms optimum not guaranteed
 - "Simple" rules \Rightarrow feasible solutions
 - Construction heuristics
 - Local search heuristics

• Consider a minimization integer linear program (ILP):

- The feasible set $X = \{ \mathbf{x} \in Z_+^n | \mathbf{A}\mathbf{x} \le \mathbf{b} \}$ is *non*-convex
- How prove that a solution $\mathbf{x}^* \in X$ is optimal?
- We cannot use strong duality/complementarity as for linear optimization (where X is polyhedral ⇒ convexity)
- Bounds on the optimal value
 - Optimistic estimate $\underline{z} \leq z^*$ from a *relaxation* of ILP
 - Pessimistic estimate $\bar{z} \ge z^*$ from a *feasible solution* to ILP
- ► Goal: Find "good" feasible solution and tight bounds for z^* : $\bar{z} - \underline{z} \le \varepsilon$ and $\varepsilon > 0$ "small"

Optimistic estimates of z^* from relaxations

- Either: Enlarge the set X by removing constraints
- Or: Replace c^Tx by an underestimating function f, i.e., such that f(x) ≤ c^Tx for all x ∈ X
- Or: Do both
- \Rightarrow solve a *relaxation* of (ILP)

• Example (enlarge X):

$$X = \{ \mathbf{x} \ge \mathbf{0} \mid \mathbf{A}\mathbf{x} \le \mathbf{b}, \text{ x integer } \} \text{ and } \\
X^{\text{LP}} = \{ \mathbf{x} \ge \mathbf{0} \mid \mathbf{A}\mathbf{x} \le \mathbf{b} \} \\
\Rightarrow \quad z^{\text{LP}} = \min_{\mathbf{x} \in X^{\text{LP}}} \mathbf{c}^{\text{T}} \mathbf{x}$$

• It holds that $z^{\mathrm{LP}} \leq z^*$ since $X \subseteq X^{\mathrm{LP}}$

Relaxation principles that yield more tractable problems

Linear programming relaxation

Remove integrality requirements (enlarge X)

Combinatorial relaxation

E.g. remove subcycle constraints from asymmetric TSP \Rightarrow min-cost assignment (enlarge X)

Lagrangean relaxation

Move "complicating" constraints to the objective function, with penalties for infeasible solutions; then find "optimal" penalties (enlarge X and construct a function f such that $f(\mathbf{x}) \leq \mathbf{c}^{\mathrm{T}}\mathbf{x}, \forall \mathbf{x} \in X$)

Tight bounds

Suppose that x̄ ∈ X is a feasible solution to ILP (min-problem) and that x solves a relaxation of ILP

Then

$$\underline{z} := \mathbf{c}^{\mathrm{T}} \underline{\mathbf{x}} \le z^* \le \mathbf{c}^{\mathrm{T}} \overline{\mathbf{x}} =: \overline{z}$$

- <u>z</u> is an optimistic estimate of z*
- ▶ z̄ is a pessimistic estimate of z*
- If z̄ − z ≤ ε then the value of the solution candidate x̄ is at most ε from the optimal value z*
- ► Efficient solution methods for ILP combine relaxation and heuristic methods to find tight bounds (small ε ≥ 0)

Branch–&–Bound algorithms (B&B)

(Ch. 15)

$$[\mathsf{ILP}] \qquad z^* = \min_{\mathbf{x} \in X} \mathbf{c}^{\mathrm{T}}\mathbf{x}, \qquad X \subset Z^n$$

- Divide—and—conquer: a general principle to partition and search the feasible space
- Branch-&-Bound: Divide-and-conquer for finding optimal solutions to optimization problems with integrality requirements
- Can be adapted to different types of models
- ► Can be combined with other (e.g. heuristic) algorithms
- Also called implicit enumeration and tree search
- Idea: Enumerate all feasible solutions by a successive partitioning of X into a family of subsets
- Enumeration organized in a tree using graph search; it is made implicit by utilizing approximations of z* from relaxations of [ILP] for cutting off branches of the tree

Branch-&-bound for ILP: Main concepts

- Relaxation: a simplification of [ILP] in which some constraints are removed
 - Purpose: to get simple (polynomially solvable) (node) subproblems, and optimistic approximations of z*.
 - Examples: remove integrality requirements, remove or Lagrangean relax complicating (linear) constraints (e.g. sub-tour constraints)
- Branching strategy: rules for partitioning a subset of X
 - Purpose: exclude the solution to a relaxation if it is not feasible in [ILP]; corresponds to a *partitioning* of the feasible set
 - **Examples:** Branch on fractional values, subtours, etc.

B&B: Main concepts (continued)

- Tree search strategy: defines the order in which the nodes in the B&B tree are created and searched
 - Purpose: quickly find good feasible solutions; limit the size of the tree
 - Examples: depth-, breadth-, best-first.
- Node cutting criteria: rules for deciding when a subset should not be further partitioned
 - Purpose: avoid searching parts of the tree that cannot contain an optimal solution
 - Cut off a node if the corresponding node subproblem has
 - no feasible solution, or
 - an optimal solution which is feasible in [ILP], or
 - an optimal objective value that is worse (higher) than that of any known feasible solution

ILP: Solution by the branch-and-bound algorithm

- Relax integrality requirements \Rightarrow linear (continuous) program
- B&B tree: branch over fractional variable values

