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Methods for ILP: Overview (Ch. 14.1)

◮ Enumeration

◮ Implicit enumeration: Branch–and–bound

◮ Relaxations

◮ Decomposition methods: Solve simpler problems repeatedly

◮ Add valid inequalities to an LP – “cutting plane methods”

◮ Lagrangian relaxation

◮ Heuristic algorithms – optimum not guaranteed

◮ “Simple” rules ⇒ feasible solutions

◮ Construction heuristics

◮ Local search heuristics
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Relaxations and feasible solutions (Ch. 14.2)

◮ Consider a minimization integer linear program (ILP):

[ILP] z∗ := min cTx

subject to Ax ≤ b

x ≥ 0 and integer

◮ The feasible set X = {x ∈ Z n
+ |Ax ≤ b} is non-convex

◮ How prove that a solution x∗ ∈ X is optimal?

◮ We cannot use strong duality/complementarity as for linear
optimization (where X is polyhedral ⇒ convexity)

◮ Bounds on the optimal value
◮ Optimistic estimate z ≤ z∗ from a relaxation of ILP
◮ Pessimistic estimate z̄ ≥ z∗ from a feasible solution to ILP

◮ Goal: Find “good” feasible solution and tight bounds for z∗:
z̄ − z ≤ ε and ε > 0 “small”
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Optimistic estimates of z∗ from relaxations

◮ Either: Enlarge the set X by removing constraints

◮ Or: Replace cTx by an underestimating function f , i.e., such
that f (x) ≤ cTx for all x ∈ X

◮ Or: Do both

⇒ solve a relaxation of (ILP)

◮ Example (enlarge X ):

X = {x ≥ 0 | Ax ≤ b, x integer } and
XLP = {x ≥ 0 | Ax ≤ b}

⇒ zLP = min
x∈XLP

cTx

◮ It holds that zLP ≤ z∗ since X ⊆ XLP
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Relaxation principles that yield more tractable problems

◮ Linear programming relaxation

Remove integrality requirements (enlarge X )

◮ Combinatorial relaxation

E.g. remove subcycle constraints from asymmetric TSP ⇒
min-cost assignment (enlarge X )

◮ Lagrangean relaxation

Move “complicating” constraints to the objective function,
with penalties for infeasible solutions; then find “optimal”
penalties (enlarge X and construct a function f such that
f (x) ≤ cTx, ∀x ∈ X )
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Tight bounds

◮ Suppose that x̄ ∈ X is a feasible solution to ILP
(min-problem) and that x solves a relaxation of ILP

◮ Then
z := cTx ≤ z∗ ≤ cTx̄ =: z̄

◮ z is an optimistic estimate of z∗

◮ z̄ is a pessimistic estimate of z∗

◮ If z̄ − z ≤ ε then the value of the solution candidate x̄ is at
most ε from the optimal value z∗

◮ Efficient solution methods for ILP combine relaxation and
heuristic methods to find tight bounds (small ε ≥ 0)

Lecture 6a Linear and integer optimization with applications



Branch–&–Bound algorithms (B&B) (Ch. 15)

[ILP] z∗ = min
x∈X

cTx, X ⊂ Z n

◮ Divide–and–conquer: a general principle to partition and
search the feasible space

◮ Branch–&–Bound: Divide–and–conquer for finding optimal

solutions to optimization problems with integrality
requirements

◮ Can be adapted to different types of models
◮ Can be combined with other (e.g. heuristic) algorithms
◮ Also called implicit enumeration and tree search
◮ Idea: Enumerate all feasible solutions by a successive

partitioning of X into a family of subsets
◮ Enumeration organized in a tree using graph search; it is made

implicit by utilizing approximations of z∗ from relaxations of
[ILP] for cutting off branches of the tree
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Branch–&–bound for ILP: Main concepts

◮ Relaxation: a simplification of [ILP] in which some constraints
are removed

◮ Purpose: to get simple (polynomially solvable) (node)
subproblems, and optimistic approximations of z∗.

◮ Examples: remove integrality requirements, remove or
Lagrangean relax complicating (linear) constraints (e.g.
sub-tour constraints)

◮ Branching strategy: rules for partitioning a subset of X

◮ Purpose: exclude the solution to a relaxation if it is not feasible
in [ILP]; corresponds to a partitioning of the feasible set

◮ Examples: Branch on fractional values, subtours, etc.
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B&B: Main concepts (continued)

◮ Tree search strategy: defines the order in which the nodes in
the B&B tree are created and searched

◮ Purpose: quickly find good feasible solutions; limit the size of
the tree

◮ Examples: depth-, breadth-, best-first.

◮ Node cutting criteria: rules for deciding when a subset should
not be further partitioned

◮ Purpose: avoid searching parts of the tree that cannot contain
an optimal solution

◮ Cut off a node if the corresponding node subproblem has

◮ no feasible solution, or

◮ an optimal solution which is feasible in [ILP], or

◮ an optimal objective value that is worse (higher) than that of
any known feasible solution

Lecture 6a Linear and integer optimization with applications



ILP: Solution by the branch–and–bound algorithm

◮ Relax integrality requirements ⇒ linear (continuous) program

◮ B&B tree: branch over fractional variable values
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