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Overview

◮ Relaxations: cutting planes and Lagrangean duals

◮ TSP and routing problems

◮ Branch–and–bound for structured problems
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Good and ideal formulations (Ch. 14.3)

Ax ≤ b

Ideal since all extreme

points are integral

The linear program has

integer extreme points
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Cutting planes: A very small example

◮ Consider the following ILP:

min{−x1 − x2 : 2x1 + 4x2 ≤ 7, x1, x2 ≥ 0 and integer}

◮ ILP optimal solution: z = −3, x = (3, 0)

◮ LP (continuous relaxation) optimum: z = −3.5, x = (3.5, 0)

◮ Generate a simple cut:
“Divide the constraint” by 2
and round the RHS down

x1 + 2x2 ≤ 3.5 ⇒ x1 + 2x2 ≤ 3

◮ Adding this cut to the
continuous relaxation yields
the optimal ILP solution
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Cutting planes: valid inequalities (Ch. 14.4)

◮ Consider the ILP

max 7x1 + 10x2

subject to −x1 + 3x2 ≤ 6 (1)
7x1 + x2 ≤ 35 (2)

x1, x2 ≥ 0, integer

◮ LP optimum: z = 66.5, x = (4.5, 3.5)

◮ ILP optimum: z = 58, x = (4, 3)

◮ Generate a VI by “adding”
the two constraints (1) and (2):
6x1 + 4x2 ≤ 41 ⇒ 3x1 + 2x2 ≤ 20
⇒ x = (4.36, 3.45)

◮ Generate a VI by “7·(1)+(2)”:
22x2 ≤ 77 ⇒ x2 ≤ 3
⇒ x = (4.57, 3)

(1)
(2)
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Cutting plane algorithms (iterativley better approximations

of the convex hull) (Ch. 14.5)

◮ Choose a suitable mathematical formulation of the problem

1. Solve the linear programming (LP) relaxation

2. If the solution is integer, Stop. An optimal solution is found

3. Add one or several valid inequalities that cut off the fractional
solution but none of the integer solutions

4. Resolve the new problem and go to step 2.

◮ Remark: An inequality in higher dimensions defines a
hyper-plane; therefore the name cutting plane

Lecture 7 Linear and integer optimization with applications



About cutting plane algorithms

◮ Problem: It may be necessary to generate VERY MANY cuts

◮ Each cut should also pass through at least one integer point
⇒ faster convergence

◮ Methods for generating valid inequalities
◮ Chvatal-Gomory cuts (combine constraints, make beneficial

roundings of LHS and RHS)
◮ Gomory’s method: generate cuts from an optimal simplex basis

(Ch. 14.5.1)

◮ Pure cutting plane algorithms are usually less efficient than
branch–&–bound

◮ In commercial solvers (e.g. CPLEX), cuts are used to help
(presolve) the branch–&–bound algorithm

◮ For problems with specific structures (e.g. TSP and set
covering) problem specific classes of cuts are used

Lecture 7 Linear and integer optimization with applications



Lagrangian relaxation (⇒ optimistic estimates of z
∗)

(Ch. 17.1–17.2)

◮ Consider a minimization integer linear program (ILP):

[ILP] z∗ = min cTx

subject to Ax ≤ b (1)
Dx ≤ d (2)
x ≥ 0 and integer

◮ Assume that the constraints (1) are complicating (subtour
eliminating constraints for TSP, e.g.)

◮ Define the set X = {x ∈ Z n
+ |Dx ≤ d}

◮ Remove the constraints (1) and add them—with penalty
parameters v—to the objective function

h(v) = min
x∈X

{

cTx + vT(Ax − b)
}

(3)
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Weak duality of Lagrangian relaxations

Theorem: For any v ≥ 0 it holds that h(v) ≤ z∗.

Proof: Let x be feasible in [ILP] ⇒ x ∈ X and Ax ≤ b. It then
holds that

h(v) = min
x∈X

{

cTx + vT(Ax − b)
}

≤ cTx + vT(Ax − b) ≤ cTx.

Since an optimal solution x∗ to [ILP] is also feasible, it holds
that

h(v) ≤ cTx∗ = z∗.

⇒ h(v) is a lower bound on the optimal value z∗ for any v ≥ 0

◮ The best lower bound is given by

h∗ = max
v≥0

h(v) = max
v≥0

{

min
x∈X

{

cTx + vT(Ax− b)
}

}
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Tractable Lagrangian relaxations

◮ Special algorithms for minimizing the Lagrangian dual
function h exist (e.g., subgradient optimization, Ch. 17.3)

◮ h is always concave but typically nondifferentiable

◮ For each value of v chosen, a subproblem (3) must be solved

◮ For general ILP’s: typically a non-zero duality gap h∗ < z∗

◮ The Lagrangian relaxation bound is never worse that the
linear programming relaxation bound, i.e. zLP ≤ h∗ ≤ z∗

◮ If the set X has the integrality property (i.e., XLP has integral
extreme points) then h∗ = zLP

◮ Choose the constraints (Ax ≤ b) to dualize such that the
relaxed problem (3) is computationally tractable but still does
not possess the integrality property
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An ILP Example

[Homework]

Find optimistic and pessimistic bounds for the following ILP
example using the branch–&–bound algorithm, a cutting plane
algorithm, and Lagrangean relaxation.

max 5x1 + 4x2

s.t. x1 + x2 ≤ 5
10x1 + 6x2 ≤ 45

x1, x2 ≥ 0 and integer

The linear programming optimal solution is given by z = 23.75,
x1 = 3.75 and x2 = 1.25
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The assignment model (Ch. 13.5)

Assign each task to one resource, and each resource to one task

◮ Linear cost cij for assigning task i to resource j ,
i , j ∈ {1, . . . , n}

◮ Variables: xij =

{

1, if task i is assigned to resource j

0, otherwise

min
n

∑

i=1

n
∑

j=1

cijxij

subject to
n

∑

j=1

xij = 1, i = 1, . . . , n

n
∑

i=1

xij = 1, j = 1, . . . , n

xij ≥ 0, i , j = 1, . . . , n
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The assignment model

◮ Choose one element from each row and each column

1

2

1

2

nn

c11 : x11

cnn : xnn

c11 c12 c13

c21 c22c23

c31 c32 c33

cn1cn2 cn3

c1n

c2n

c3n

cnn

◮ This integer linear model has integral extreme points, since it
can be formulated as a network flow problem (Ch. 8) which
has a unimodular constraint matrix (Def. 8.1)

◮ Can be efficiently solved using, e.g., the network simplex
algorithm

◮ More efficient special purpose (primal–dual–graph-based)
algorithms exist
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The travelling salesperson problem (TSP, Ch. 13.10)

◮ Given n cities and connections between all cities (distances on
each connection)

◮ Find shortest tour that passes through all the cities

1

3

45

2
120

210
130

150

110

100

80

160

1220

150

∞

∞

◮ Complexity: NP-hard due to the combinatorial explosion
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An ILP formulation of the TSP problem

◮ Let the distance from city i to city j be dij

◮ Introduce binary variables xij for each connection

◮ Let V = {1, . . . , n} denote the set of nodes (cities)

min
∑

i∈V

∑

j∈V

dijxij ,

s.t.
∑

j∈V

xij = 1, i ∈ V , (1)
∑

i∈V

xij = 1, j ∈ V , (2)
∑

i∈U,j∈V\U

xij ≥ 1, ∀U ⊂ V : 2 ≤ |U| ≤ |V | − 2, (3)

xij binary i , j ∈ V (4)

◮ Cf. the assignment problem

◮ Enter and leave each city exactly once ⇔ (1) and (2)

◮ Constraints (3): subtour elimination
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Solution methods for the TSP Problem

◮ Tailored branch–&–bound (Ch. 15)

◮ Heuristics
◮ Constructive heuristics (Ch. 16.3)
◮ Local search heuristics (Ch. 16.4)
◮ Approximation algorithms (Ch. 16.6)
◮ Metaheuristics (Ch. 16.5)

◮ . . .

◮ Common difficulty for all solution methods for the TSP:
Combinatorial explosion: # possible tours ≈ n!

⇒ Very many subtour elimination constraints (3)
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Branch–and–bound algorithm for TSP (Ch. 15.4.2)

◮ Relaxing just the binary constraints (4) in TSP does not yield
a tractable problem, since the number of subtour elinimating
constraints (3) is very large ⇒ An LP with very many

constraints

◮ Relaxing the subtour eliminating constraints (3) yields an
assignment problem, which can be solved in polynomial time

◮ Solutions to a relaxed problem typically contains a number of
sub-tours

◮ Branch on these sub-tours (rather than on fractional variables)

◮ Branching ⇔ partitioning of the solution space

◮ Draw an example
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