
MVE165/MMG631

Linear and integer optimization with applications
Lecture 8

Combinatorial optimization theory and algorithms

Ann-Brith Strömberg

2014–04–11

Lecture 8 Linear and integer optimization with applications

Overview

◮ Convexity

◮ Local and global optima

◮ Heuristics:

I Constructive heuristics

II Local search methods

III Approximation algorithms

IV Meta-heuristics

Lecture 8 Linear and integer optimization with applications

Convex sets

◮ A set S is convex if, for any elements x, y ∈ S it holds that

αx+ (1− α)y ∈ S for all 0 ≤ α ≤ 1

◮ Examples:

xx

x

y
y

y

Convex sets Non-convex sets

⇒ Integrality requirements ⇒ nonconvex feasible set

Lecture 8 Linear and integer optimization with applications

Local vs. global optima

Consider a minimization problem:

min
x∈X

cTx

◮ Global optimum:
A solution x∗ ∈ X such that cTx∗ ≤ cTx for all x ∈ X

◮ ε-neighbourhood of x̄: Nε(x̄) =
{

x ∈ X
∣

∣ ‖x − x̄‖ ≤ ε
}

◮ The distance measure ‖x− x̄‖ may be “freely” defined as,
e.g., # arcs differing (Hamming distance), Euclidean,
Manhattan, 2-interchange, ...

◮ Local optimum:
A solution x̄ ∈ X such that cTx̄ ≤ cTx for all x ∈ Nε(x̄) for
some ε > 0

Lecture 8 Linear and integer optimization with applications

Heuristic algorithms

◮ Optimization problems with high complexity may be too time
consuming to solve to optimality

◮ Heuristic algorithms can be utilized

◮ But: Only local optimality can then be guaranteed

Lecture 8 Linear and integer optimization with applications

Heuristics I: Constructive heuristics (Ch. 16.3)

Consider a minimization problem:

min
x∈X

cTx

◮ Start by an “empty set” and “add” elements according to
some (simple) rule

◮ Sometimes – no guarantee that even a feasible solution will be
found

◮ No measure of how “close” to a global optimum a solution is

◮ Special rules for structured problems

◮ E.g. the greedy algorithm is a constructive heuristic (finds,
however, optimal solution to minimum spanning tree)

◮ For TSP: nearest neighbour, cheapest insertion, farthest
insertion, etc

◮ Example!

Lecture 8 Linear and integer optimization with applications

Heuristics II: Local search (Ch. 16.4)

Consider a minimization problem:

min
x∈X

cTx

◮ Start from a feasible solution, which is iteratively improved by
limited modifications

◮ Finds a local optimum

◮ No measure on how close to a global optimum a solution is

◮ Specialized for structured problems, but also general (Ch.
16.2)

◮ For TSP: e.g. 2-interchange, 3-interchange,

◮ Example!

Lecture 8 Linear and integer optimization with applications

Local search heuristic algorithm (Ch. 16.4)

Consider a minimization problem:

min
x∈X

cTx

0. Initialization: Choose a feasible solution x0 ∈ X . Let k = 0.

1. Find all feasible points in an ε-neighbourhood Nε(x
k) of xk

2. If cTx ≥ cTxk for all x ∈ X ∩ Nε(x
k) ⇒ Stop. xk is a local

optimum (w.r.t. Nε)

3. Choose xk+1 ∈ X ∩ Nε(x
k) such that cTxk+1 < cTxk

4. Let k := k + 1 and go to step 1

Lecture 8 Linear and integer optimization with applications

Heuristics III: Approximation algorithms (Ch. 16.6)

Consider a minimization problem:

min
x∈X

cTx

◮ Performance guarantee:
z̄ − z∗

z∗
≤ α for some 0 < α ≤ 1

◮ Specialized algorithms for structured problems

Lecture 8 Linear and integer optimization with applications

Example of an approximation algorithm

◮ The spanning tree approximation algorithm for the TSP

◮ Need some more definitions for this: Spanning trees and
greedy algorithms

Lecture 8 Linear and integer optimization with applications

The minimum spanning tree (MST) problem

◮ Given an undirected graph G = (N,E) with nodes N, edges E
and distances dij for each edge (i , j) ∈ E

◮ Find a subset of the edges that connects all nodes at
minimum total distance

◮ The number of edges in a spanning tree is |N| − 1

◮ A (spanning) tree contains no cycles

◮ MST is a very simple problem (a matroid) that can be solved
by greedy algorithms

Lecture 8 Linear and integer optimization with applications

Greedy algorithms for MST

◮ Prim’s algorithm

1. Start at an arbitrary node
2. Among the nodes that are not yet connected, choose the one

that can be connected at minimum cost
3. Stop when all nodes are connected

◮ Solve an example!

◮ Kruskal’s algorithm

1. Sort the edges by increasing distances
2. Choose edges starting from the beginning of the list; skip

edges resulting in cycles
3. Stop when all nodes are connected

◮ Solve an example!

Lecture 8 Linear and integer optimization with applications

Spanning tree approximation algorithm for the TSP

◮ Consider a TSP on an undirected graph G = (N,E , c)

◮ Assume
◮ G complete ⇔ edges between all pairs of nodes
◮ ∆-inequality: cij ≤ cik + ckj for all i , j , k ∈ N Draw!

1. Find a minimum spanning tree T ⊂ E on G

2. Create a multigraph G ′ using two copies of each edge in T

3. Find an Eulerian walk of G ′ and and embedded TSP-tour

◮ Guarantee:
z̄ − z∗

z∗
≤ 1

◮ Not worse than twice the optimal tour!

◮ Example!

Lecture 8 Linear and integer optimization with applications

Proof

◮ Let c(TSP) = z∗ and c(tour) = z̄

◮ A spanning tree is a relaxation of a TSP:
All soubtour elimination constraints are fulfilled, but not the
node valence (2 edges incident to each node)

⇒ c(MST) ≤ c(TSP)

◮ Two copies of each edge ⇒ c(tour) ≤ 2c(MST) ≤ 2c(TSP)

⇒
c(tour)− c(TSP)

c(TSP)
≤ 1

Lecture 8 Linear and integer optimization with applications

Heuristics IV: Metaheuristics (Ch. 16.5)

Consider a minimization problem:

min
x∈X

cTx

◮ Intends to be more efficient than just plain local search
methods

◮ Includes tabu search, simulated annealing

Lecture 8 Linear and integer optimization with applications

More about heuristics

◮ Start using a constructive heuristic ⇒ feasible solution

◮ The choice of definition of a neighbourhood is model specific
(e.g. Euclidean distance, number of arcs differing,)

◮ Apply a local search algorithm

◮ Finds a locally optimal solution

◮ No guarantee to find global optimal solutions

◮ Extensions (e.g. tabu search): Temporarily allow worse
solutions to “move away” from a local optimum (Ch. 16.5)

◮ Larger neighbourhoods yield better local optima, but takes
more computation time to explore

Lecture 8 Linear and integer optimization with applications

The historical development of TSP solution

◮ Optimal solutions to TSP’s of different sizes found

year n =

1954 49
1962 33
1977 120
1987 532
1987 666
1987 2392
1994 7397
1998 13509
2001 15112
2004 24978

2005/06 85900

Lecture 8 Linear and integer optimization with applications

The worlds largest TSP solved “so far” (2004) ...

◮ A TSP of 24 978 cities and villages (red houses) in Sweden

◮ Optimal tour: ≈ 72 500 km (855597 TSP LIB units)

◮ The tour of length 855 597 was found in March 2003
(Lin-Kernighan’s TSP heuristic)

◮ It was proven in May 2004 that no shorter tour exists

◮ A variety of heuristics, B&B, and cut generation algorithms

◮ The final stages that improved the lower bound from 855 595
up to 855 597 required ≈ 8 years of computation time
(running in parallel on a network of Linux workstations)

“Without knowledge of the 855 597 tour we would not have

made the decision to carry out this final computation”

◮ www.tsp.gatech.edu

◮ New record in 2005/06: 85 900 locations in a VLSI
application www.tsp.gatech.edu/pla85900

◮ Curious: iPhone/iPad App: Concorde TSP

Lecture 8 Linear and integer optimization with applications

