
Chalmers University of Technology MVE165
University of Gothenburg MMG631
Mathematical Sciences Linear and integer optimization
Optimization with applications
Emil Gustavsson Assignment information
Ann-Brith Strömberg May 5, 2015

Assignment 3b:
The traveling salesman problem

Given below is a description of the traveling salesman problem (TSP). The
model together with its problem background are described in more detail in
the notes of Lecture 9b.

Material for the assignment is found at the course homepage:
http://www.math.chalmers.se/Math/Grundutb/CTH/mve165/1415/

Files for creating, plotting and solving TSP instances are given.

Exercises 1–4 are mandatory. In addition, students aiming at grade 4, 5 or
VG must perform at least one of exercises 5 and 6.

To pass the assignment you should (in groups of two persons) (i) write a
detailed report that gives satisfactory answers and explanations to the ques-
tions. You shall also estimate the number of hours spent on this assignment
and note this in your report.

The file containing your report shall be called Name1-Name2-Ass3b.pdf,
where “Namek”, k = 1, 2, is your respective family name. Do not forget to

write the authors’ names also inside the report.

The report should be

submitted in PingPong at the latest Friday 22th of May 2015.

Your shall also (ii) present your assignment orally at a seminar on
May 25, 26, or 27, 2015.

The seminars are scheduled via a doodle link, which will be published on the
course home page. Presence is mandatory at at least one of these seminars.

Problem background

The Traveling Salesman Problem (TSP) is one of the most studied problems
in optimization and computational mathematics. The name of the problem
comes from the case when a salesman has a number of cities to visit, and
he/she wishes to find the shortest route such that each city is visited at least
once. It was first formulated as a mathematical problem in the 1930s and can
be stated as (see also Figure 1):

Given a list of cities and their pairwise distances, find the shortest possible

tour that visits each city exactly once.

Figure 1: The shortest tour that visits all nodes exactly once.

The TSP is ane NP-hard problem, meaning that there does not exist any
algorithm that can solve a general instance of the problem to optimality in
polynomial time. In essence, an NP-hard problem is computationally difficult,
and we can not expect to solve it exactly when considering larger problem
instances. For a more general description of NP-hard problems; see [1].

Because of the computational complexity of the TSP, we have to consider
solution methods that can provide acceptable solutions within a reasonable
amount of time. Not only do we wish a candidate for a short tour, but also a
measure of how much the solution can be improved by searching further. To
obtain a candidate solution and an associated quality meausure, consider the
following two optimization approaches:

• Heuristics. Algorithms for finding feasible and acceptable solutions that
provide upper bounds on the objective value.

• Relaxation algorithms. Relaxing the problem to obtain easier–to–solve
problems, which produce lower bounds on the optimal objective value.

The largest TSP instance solved to optimality is a problem with 85,900 cities,
which was solved by the Concorde code in 2006. Another interesting example
is the shortest tour visiting all the cities in Sweden (24 978 cities) which was
found in 2004 and has a length of approximately 72,500 km; see [2].

2

The mathematical model

Consider a set N = {1, . . . , N} of cities (nodes), where the distance between
city i and j is cij for i, j ∈ N . In this assignment, we consider the symmetric

TSP, in which the distance between two cities does not depend on the direc-
tion, i.e., cij = cji. For the symmetric case, a model of TSP can be simplified
by considering undirected links between the cities, meaning that we do not
distinguish between the links (i, j) and (j, i). Let L ⊆ N × N denote the
undirected links in the graph; note that the links (i, j) and (j, i) are repre-
sented by one un-directed link in the set L. When implementing the model, let
L = {(i, j) : i, j ∈ N , i < j}. Introduce the binary variables xij , where xij = 1
if the salesman travels from city i directly to city j, and xij = 0 otherwise.
The objective is to find a tour of minimum total distance such that each city
is visited exactly once. This can be formulated as an integer linear program:

minimize
∑

(i,j)∈L

cijxij , (1a)

subject to
∑

j∈N :(i,j)∈L

xij +
∑

j∈N :(j,i)∈L

xji = 2, i ∈ N , (1b)

∑

(i,j)∈L:{i,j}⊆S

xij ≤ |S| − 1, S ⊂ N , (1c)

xij ∈ {0, 1}, (i, j) ∈ L. (1d)

The objective (1a) is to minimize the distance of the tour. The constraints (1b)
mean that each city must be entered and left exactly once. The constraints
(1c) mean that no subtours are allowed. The subtour constraints can also be
formulated as

∑

(i,j)∈L: i∈S, j∈N\S

xij +
∑

(j,i)∈L: i∈S, j∈N\S

xji ≥ 2, S ⊂ N . (1e)

A special case is the metric TSP problem in which all distances fulfill the
triangle inequality, i.e., cik + ckj ≥ cij for all i, j, k ∈ N . All the problem
instances in this assignment are metric TSP problems.

Algorithms

The most direct solution technique would be to try all possible tours and
then choose the one with lowest cost. A brute force technique like this would
require a running time which lies within a polynomial factor of O(n!), and
hence would be computationally intractable even for problems with only 20
cities. The exact Held–Karp algorithm, which utilizes dynamic programming,
solves the problem in time O(n22n).

Constructive heuristics

There are many specially designed constructive heuristics for the TSP which—
by finding a feasible tour—yields an upper bound on the optimal objective
value. Some heuristics are based on simple rules deciding which city the

3

route should visit next—e.g., the nearest neighbour heuristic—, while oth-
ers are based on solving simple subproblems to find feasible tours—e.g. the
Christofides and the MST-heuristic). See also [3, 4].

Probabilistic heuristics involve some stochastic rules for choosing the tour.
Some of the most known probabilistic heuristics are genetic algorithms, sim-

mulated annealing and ant colony optimization.

Improvement heuristics

An improvement heuristic starts from a tour (given, e.g., by a constructive
heuristic) and improves it iteratively. The most used improvement heuristics
for the TSP are the k-opt heuristics and the crossing elimination; see [3, 4].

Relaxation algorithms

By relaxing some constraints and solving the resulting problem to optimality,
lower bounds on the distance of the optimal route are obtained. The trick
when relaxing a problem is that the relaxed problem should be easy to solve.
In this assignment, we will consider the 1-tree Lagrangian relaxation algorithm.

A tree defined on a set of nodes is a graph that connects all the nodes without
forming any cycles. A 1-tree defined on N nodes is a connected graph with N

arcs and exactly one cycle. Using this definition, the symmetric TSP can be
formulated as to find the cheapest 1-tree such that all the nodes has degree
two, i.e., the TSP can be to formulated as to

minimize
∑

(i,j)∈L

cijxij, (2a)

subject to
∑

j∈N :(i,j)∈L

xij = 2, i ∈ N , (2b)

x forms a 1-tree. (2c)

Relaxing the assignment constraints (2b) for all the nodes except node s,
results in the problem to find a minimum spanning tree on the set N \ {s} of
nodes, and then connect node s to this tree by the two cheapest arcs. This
can be efficiently done by first finding an MST using, e.g., Prim’s or Kruskal’s
algorithm, and then connecting node s to the tree. The problem to find the
cheapest 1-tree in a graph is called a 1-MST problem.

The 1-tree relaxation of the TSP yields, however, quite poor lower bounds.
Therefore, we will Lagrangian relax the assignment constraints and consider
the relaxed problem

q(π) := min
∑

(i,j)∈L

cijxij +
∑

i∈N

πi

(
2−

∑

j∈N : (i,j)∈L

xij

)
, (3a)

subject to x is a 1-tree with root node s (3b)

where q : R
N 7→ R is called the dual objective function. For any value of

π ∈ R
N , the dual objective function can easily be evaluated by finding an

MST over the set N \ {s}, and then connecting node s to this tree by the two
cheapest arcs. Note that the objective function in (3a) can be expressed as

∑

(i,j)∈L

c̃ijxij + 2
∑

i∈N

πi,

4

where c̃ij := cij − πi − πj denotes the reduced cost. A high (low) value of the
multiplier πi makes node i (un-)attractive in the 1-MST problem (3).

The dual objective value yields a lower bound on the optimal objective value,
and the goal of a relaxation algorithm is to find an as good lower bound as
possible, i.e., to find q∗ := max

π∈RN {q(π)}. To achieve this, we will utilize
a so-called subgradient algorithm. In each iteration k of the algorithm, new
multiplier values πk+1 are computed from π

k, such that the new iterates are
closer to the optimal solution π

∗. The updating utilizes the subgradient

hki = 2−
∑

j∈N : (i,j)∈L

xkij, i ∈ N ,

where xkij is the solution obtained from solving the 1-MST problem (3) for

π = π
k. The multipliers are then updated according to

π
k+1 := π

k + αk
h
k, k = 0, 1, . . . , (4)

where the steplengths αk are defined by

αk := ξk
q∗ − q(πk)

‖hk‖2
, 0 < ε1 ≤ ξk ≤ ε2 < 2, k = 0, 1, (5)

Since q∗ is unknown, the value of the best primal feasible solution obtained
so far is used in (5). One common choice is to start the sequence {ξk} with
ξ0 = 2 and reduce ξk by a factor of 2 whenever the value of q(πk) has failed
to increase in a prespecified number of iterations.

A measure of the quality of the lower bound on the optimal objective value
can be found by constructing a heuristic that finds a feasible tour based on
the solution found in the evaluation of the dual objective function (3). A short
version of the algorithm can thus be formulated as follows:

Step 0: Let k = 0 and choose π
0 ∈ R

N .
Step 1: Given π

k, solve (3).
Step 2: Construct a feasible tour. Start from the solution obtained from
solving the dual problem and make adjustments such that it becomes feasible.
Step 3: If the duality gap is small enough, stop.
Step 4: Compute π

k+1 according to (4), let k := k + 1, and go to Step 1.

Exercises to perform and questions to answer

1. Use the TSP model implemented in TSP.mod and solve the instances
TSP small and TSP medium with CPLEX. What is the length of the
shortest tour in each of the instances? Now, relax (one set at a time)
the constraints (1b), (1c), and (1d), and resolve the instances. (When
relaxing the constraints (1b), use (1e) as the subtour constraints). Which
of the relaxations yield(s) the best lower bound? Plot the solutions for
the instances with and without relaxations using the file plot TSP.m in
MATLAB. Describe what you see. Comment on the computation times.

2. (a) Construct a deterministic, constructive heuristic. You are more
than welcome to use your own heuristic or other heuristics not
mentioned in this assignment description. Explain how it works.

5

(b) Apply the heuristic to all the test instances. What are the lengths
of the tours found by the heuristic? Can you (by visual inspection)
determine whether the solutions can be improved?

(c) What can you say about the optimal objective values for the test
instances? What kind of performance guarantee can your heuris-
tic provide? Why? Try to construct an instance for which your
heuristic performs as bad as possible; it does not have to be metric.

(d) Analyze how the computation time of your heuristic depends on
the number of cities. Use the file create TSP.m to create TSP
instances.

3. (a) Construct an improvement heuristic that starts from a feasible tour
and then improves it. Explain how it works.

(b) Test the improvement heuristic by, for each of the test instances,
starting from the tour found by the constructive heuristic. How
much does the heuristic improve the initial tours?

4. (a) Implement the 1-tree Lagrangian relaxation algorithm. Note that
you need to construct a primal feasibility heuristic that is used in
each iteration.

(b) Apply your algorithm to all the test instances. What can you say
about the optimal objective values?

(c) Show in a graph how the gap between the lower and upper bounds
improves in each iteration. Since some of the instances are large
you should set a limit on the allowed number of iterations.

5. Implement a probabilistic heuristic for the TSP and explain how it works.
Try it on all the test instances and analyze its performance. Can the
heuristic provide any performance guarantees on the solutions found?

6. Describe how either a branch–and–bound or a cutting plane algorithm
can be utilized for solving the traveling salesman problem (you don’t
have to implement it). References are found in [3, 4, 5].

References

[1] The P versus NP page. www.win.tue.nl/∼gwoegi/P-versus-NP.htm

[2] Concorde TSP Solver. www.tsp.gatech.edu/concorde.html

[3] Optimization. Jan Lundgren, Mikael Rönnqvist, Peter Värbrand. Stu-
dentlitteratur AB, Lund, 2010.

[4] The Traveling Salesman Problem: An overview of exact and approximate
algorithms. Gilbert Laporte, European Journal of Operational Research 59
(1992) 231–247, North-Holland.

[5] Solving a TSP—Cutting Plane.
www.tsp.gatech.edu/methods/dfj/index.html

6

