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Applied optimization — multiple objectives

Many practical optimization problems have several objectives
which may be in conflict

Some goals cannot be reduced to a common scale of
cost/profit ⇒ trade-offs must be addressed

Examples

Financial investments — risk vs. return

Engine design — efficiency vs. NOx vs. soot

Wind power production — investment vs. operation (Ass 3a)

Literature on multiple objectives’ optimization

Copies from the book Optimization in Operations Research by R.L.
Rardin (1998) pp. 373–387, handed out (on paper, copies kept
outside Ann-Brith’s office, room MV:L2087)
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Optimization of multiple objectives

Consider the minimization of f (x) := (x − 1)2 subject to
0 ≤ x ≤ 3

Optimal solution: x∗ = 1
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Optimization of multiple objectives

Consider then two objectives

minimize [f1(x), f2(x)]

subject to 0 ≤ x ≤ 3

where

f1(x) := (x − 1)2, f2(x) := 3(x − 2)2

How can an optimal solution by
defined?

A solution is Pareto optimal if no
other feasible solution has a better
value in all objectives

All points x ∈ [1, 2] are Pareto
optimal
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Pareto optimal solutions in the objective space

minimize [f1(x), f2(x)] subject to 0 ≤ x ≤ 3
where f1(x) := (x − 1)2 and f2(x) := 3(x − 2)2

A solution is Pareto optimal if no other feasible solution has
a better value in all objectives
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Pareto optima ⇔ nondominated points ⇔ efficient frontier
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Efficient points

Consider a bi-objective linear program:

maximize 3x1 + x2

maximize −x1 + 2x2

subject to x1 + x2 ≤ 4

0 ≤ x1 ≤ 3

0 ≤ x2 ≤ 3
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The solutions in the green cone are better than the solution
(2, 2) w.r.t. both objectives

The point x = (2, 2) is an efficient, or non-dominated, solution
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Dominated points

maximize 3x1 + x2

maximize −x1 + 2x2

subject to x1 + x2 ≤ 4

0 ≤ x1 ≤ 3

0 ≤ x2 ≤ 3
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The point x = (3, 0) is dominated by the solutions in the
green cone

Feasible solutions exist that are better w.r.t. both objectives
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Dominated points

maximize 3x1 + x2

maximize −x1 + 2x2

subject to x1 + x2 ≤ 4

0 ≤ x1 ≤ 3

0 ≤ x2 ≤ 3
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The point x = (1, 1) is dominated by the solutions in the
green cone

Feasible solutions exist that are better w.r.t. both objectives
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The efficient frontier—the set of Pareto optimal

solutions

maximize 3x1 + x2

maximize −x1 + 2x2

subject to x1 + x2 ≤ 4

0 ≤ x1 ≤ 3

0 ≤ x2 ≤ 3
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The set of efficient solutions is given by
{

x ∈ ℜ2
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x = α
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, 0 ≤ α ≤ 1

}

⋃

{

x ∈ ℜ2
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+ (1− α)

(

0
3

)

, 0 ≤ α ≤ 1

}

Note that this is not a convex set!
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The Pareto optimal set in the objective space

maximize f1(x) := 3x1 + x2

maximize f2(x) := −x1 + 2x2

subject to x1 + x2 ≤ 4

0 ≤ x1 ≤ 3

0 ≤ x2 ≤ 3
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The set of Pareto optimal objective values is given by
{

(f1, f2) ∈ ℜ2
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Mapping from the decision space to the objective

space

maximize [3x1 + x2;−x1 + 2x2]

subject to x1 + x2 ≤ 4, 0 ≤ x1 ≤ 3, 0 ≤ x2 ≤ 3
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Solutions methods for multiobjective optimization

Construct the efficient frontier by treating one objective as a
constraint and optimizing for the other

maximize 3x1 + x2

subject to −x1 + 2x2 ≥ ε

x1 + x2 ≤ 4

0 ≤ x1 ≤ 3

0 ≤ x2 ≤ 3

Here, let ε ∈ [−1, 6]. Why?

What if the number of objectives is ≥ 3?

How many single objective linear programs do we have to
solve for seven objectives and ten values of εk for each
objective fk , k = 1, . . . , 7?
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Solution methods: preemptive optimization

Consider one objective at a time—the most important first

Solve for the first objective

Solve for the second objective over the solution set for the first

Solve for the third objective over the solution set for the
second

...

The final solution is an efficient point

But: Different orderings of the objectives yield different points
on the efficient frontier

Exercise (homework): solve the previous example using
preemptive optimization for different orderings of the objective
functions
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Solution methods: weighted sums of objectives

Give each maximization (minimization) objective a positive
(negative) weight
Solve a single objective maximization problem

⇒ Yields an efficient solution
Well spread weights do not necessarily produce solutions that
are well spread on the efficient frontier (ex:

{

1
10 ,

1
2 , 1, 2, 10

}

)

If the objectives are not concave
(maximization) or if the feasible set
is not convex, as, e.g., integrality
constrained, then not all points
on the efficient frontier may be
possible to detect using weighted
sums of objectives
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The efficient frontier in the case of non-convexity

A bi-objective binary linear program

maximize f1(x) := 3x1 + x2 − x3

maximize f2(x) := x1 − x2 + 3x3

subject to x ∈ X :=
{

x ∈ B
3
∣

∣ x1 + x2 + x3 ≤ 2
}

Then,

X :=

{(
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0

)

,
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,
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,
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,
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,
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)

,

(

1
1
0

)}

,

f1(X ) = {0,−1, 1, 3, 0, 2, 4} and f2(X ) = {0, 3,−1, 1, 2, 4, 0}

[Illustrate the objective space on the board!]

Lecture 10 Linear and integer optimization with applications



The efficient frontier in the case of non-convexity

Solution by weighted maximization: Let α ∈ [0, 1]

αf1(x) + (1− α)f1(x) = α(3x1 + x2 − x3) + (1 − α)(x1 − x2 + 3x3)

= (2α+ 1)x1 + (2α− 1)x2 + (3− 4α)x3

Resulting binary linear program:

maximize (2α + 1)x1 + (2α − 1)x2 + (3− 4α)x3

subject to x ∈ X

α ∈ [0, 23) =⇒ x∗ = (1, 0, 1)T & f∗ = (2, 4)T

α = 2
3 ⇒ x∗ ∈ {(1, 0, 1)T , (1, 1, 0)T} & f∗ ∈ {(2, 4)T, (4, 0)T}

α ∈ (23 , 1] =⇒ x∗ = (1, 1, 0)T & f∗ = (4, 0)T

But the Pareto-optimal solution x∗ = (1, 0, 0)T with f∗ = (3, 1)T

cannot be found [Illustrate on the board!]
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Solution methods: soft constraints

Consider the multiobjective optimization problem to

maximize [f1(x), . . . , fK (x)] subject to x ∈ X

Define a target value tk and a deficiency variable dk ≥ 0 for
each objective fk
Construct a soft constraint for each objective:

maximize fk(x) ⇒ fk(x) + dk ≥ tk , k = 1, . . . ,K

Minimize the sum of deficiencies:

minimize
∑

k∈K

dk

subject to fk(x) + dk ≥ tk , k = 1, . . . ,K

dk ≥ 0, k = 1, . . . ,K

x ∈ X

Important: Find first a common scale for fk , k = 1, . . . ,K
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Normalizing the objectives

Consider the multiobjective optimization problem to

maximize [f1(x), . . . , fK (x)] subject to x ∈ X

Let

f̃k(x) :=
fk(x)− f min

k

f max

k
− f min

k

, k = 1, . . . ,K ,

where f max

k
:= max

x∈X
{fk(x)} and f min

k
:= min

x∈X
{fk(x)}

Then, f̃k(x) ∈ [0, 1] for all x ∈ X , so that the functions f̃k can
be compared in a common scale
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