MVE165/MMG631 Linear and Integer Optimization with Applications Lecture 3

Extreme points of convex polyhedra; reformulations; basic feasible solutions; the simplex method

Ann-Brith Strömberg

2015-03-27

Linear programs, convex polyhedra, extreme points

A linear optimization model – a linear program

minimize
$$z=\sum_{j=1}^n c_j x_j$$
 subject to $\sum_{j=1}^n a_{ij} x_j \leq b_i, \quad i=1,\ldots,m$ $x_j \geq 0, \quad j=1,\ldots,n$

 c_j , a_{ij} , b_i : constant parameters

Expressed in vector notation

$$\label{eq:min_problem} \begin{aligned} & \textit{min} & & z = c^{\mathrm{T}}x \\ & \textit{s.t.} & & \textit{Ax} \leq b \\ & & & x \geq 0^n \end{aligned}$$

 $\mathbf{c}, \mathbf{x} \in \mathbb{R}^n$, $\mathbf{b} \in \mathbb{R}^m$, $\mathbf{A} \in \mathbb{R}^{m \times n}$

The feasible region is a polyhedron, $X \subset \mathbb{R}^n_+$

$$X:=\left\{\mathbf{x}\geq\mathbf{0}^n\,\bigg|\,\sum_{j=1}^na_{ij}x_j\leq b_i, i=1,\ldots,m\right\}=\left\{\mathbf{x}\geq\mathbf{0}^n\,\bigg|\,\mathbf{A}\mathbf{x}\leq\mathbf{b}\right\}$$

Linear programs, convex polyhedra and extreme points (Ch. 4.1)

Definition (Convex combination)

A convex combination of the points \mathbf{x}^p , $p=1,\ldots,P$, is a point \mathbf{x} that can be expressed as

$$\mathbf{x} = \sum_{p=1}^{P} \lambda_p \mathbf{x}^p; \quad \sum_{p=1}^{P} \lambda_p = 1; \quad \lambda_p \ge 0, \ p = 1, \dots, P$$

[Draw on the board]

Linear programs, convex polyhedra and extreme points (Ch. 4.1)

Linear constraints form a convex set

The feasible region of a linear program is a *convex set*, since for any two feasible points \mathbf{x}^1 and \mathbf{x}^2 and any $\lambda \in [0,1]$ it holds that

$$\sum_{j=1}^{n} a_{ij} \left(\lambda x_{j}^{1} + (1 - \lambda) x_{j}^{2} \right) = \lambda \sum_{j=1}^{n} a_{ij} x_{j}^{1} + (1 - \lambda) \sum_{j=1}^{n} a_{ij} x_{j}^{2}$$

$$\leq \lambda b_{i} + (1 - \lambda) b_{i}$$

$$= b_{i}, \qquad i = 1, \dots, m$$

and

$$\lambda x_j^1 + (1-\lambda)x_j^2 \geq 0,$$
 $j=1,\ldots,n$

[Draw on the board]

Linear programs, convex polyhedra and extreme points (Ch. 4.1)

Definition (Extreme point (Def. 4.2))

The point \mathbf{x}^k is an extreme point of the polyhedron X if $\mathbf{x}^k \in X$ and it is not possible to express \mathbf{x}^k as a strict convex combination of two distinct points in X.

I.e: Given
$$\mathbf{x}^1 \in X$$
, $\mathbf{x}^2 \in X$, and $0 < \lambda < 1$, it holds that $\mathbf{x}^k = \lambda \mathbf{x}^1 + (1 - \lambda)\mathbf{x}^2$ only if $\mathbf{x}^k = \mathbf{x}^1 = \mathbf{x}^2$.

[Draw on the board]

Theorem (Optimal solution in an extreme point (Th. 4.2))

Assume that the feasible region $X = \{\mathbf{x} \geq \mathbf{0}^n \mid \mathbf{A}\mathbf{x} \leq \mathbf{b}\}$ is non-empty and bounded. Then, the minimum value of the objective $\mathbf{c}^T\mathbf{x}$ is attained at (at least) one extreme point \mathbf{x}^k of X.

[Proof on the board]

A general linear program – notation

Definition (Notation of linear programs)

minimize or maximize
$$c_1x_1 + \ldots + c_nx_n$$

subject to
$$a_{i1}x_1 + \ldots + a_{in}x_n$$
 $\begin{cases} \leq \\ = \\ \geq \end{cases}$ $b_i, i = 1, \ldots, m$

$$x_j \left\{ \begin{array}{l} \leq 0 \\ \text{unrestricted in sign} \\ \geq 0 \end{array} \right\}, \ \ j=1,\ldots,n$$

The blue notation refers to the standard form

The standard form and the simplex method for linear programs (Ch. 4.2)

- Every linear program can be reformulated such that:
 - all constraints are expressed as equalities with non-negative right hand sides
 - all variables involved are restricted to be non-negative
- Referred to as the standard form
- These requirements streamline the calculations of the simplex method
- Software solvers (e.g., Cplex, GLPK, Clp, Gurobi) can handle also inequality constraints and unrestricted variables – the reformulations are made automatically

Slack variables:

$$\left[\begin{array}{ccc} \sum_{j=1}^{n} a_{ij} x_{j} & \leq & b_{i}, & \forall i \\ x_{j} & \geq & 0, & \forall j \end{array}\right] \Leftrightarrow \left[\begin{array}{ccc} \sum_{j=1}^{n} a_{ij} x_{j} & +s_{i} & =b_{i}, & \forall i \\ x_{j} & \geq & 0, & \forall j \\ s_{i} & \geq & 0, & \forall i \end{array}\right]$$

• The lego example:

$$\begin{bmatrix} 2x_1 & +x_2 \leq & 6 \\ 2x_1 & +2x_2 \leq & 8 \\ & x_1, x_2 \geq & 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} 2x_1 & +x_2 & +s_1 & = & 6 \\ 2x_1 & +2x_2 & +s_2 = & 8 \\ & & x_1, x_2, s_1, s_2 \geq & 0 \end{bmatrix}$$

 s₁ and s₂ are called slack variables—they "fill out" the (positive) distances between the left and right hand sides

Surplus variables:

$$\left[\begin{array}{ccc} \sum_{j=1}^{n} a_{ij} x_{j} & \geq & b_{i}, & \forall i \\ x_{j} & \geq & 0, & \forall j \end{array}\right] \Leftrightarrow \left[\begin{array}{ccc} \sum_{j=1}^{n} a_{ij} x_{j} & -s_{i} & = b_{i}, & \forall i \\ x_{j} & \geq & 0, & \forall j \\ s_{i} & \geq & 0, & \forall i \end{array}\right]$$

• Surplus variable s₃ (a different example):

$$\begin{bmatrix} x_1 & + & x_2 & \geq & 800 \\ & x_1, x_2 & \geq & 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x_1 & + & x_2 & - & s_3 & = & 800 \\ & & x_1, x_2, s_3 & \geq & 0 \end{bmatrix}$$

• Suppose that b < 0:

$$\left[\begin{array}{c} \sum_{j=1}^{n} a_{j} x_{j} \leq b \\ x_{j} \geq 0, \forall j \end{array}\right] \Leftrightarrow \left[\begin{array}{c} \sum_{j=1}^{n} (-a_{j}) x_{j} \geq -b \\ x_{j} \geq 0, \forall j \end{array}\right] \Leftrightarrow \left[\begin{array}{ccc} -\sum_{j=1}^{n} a_{j} x_{j} & -s & =-b \\ x_{j} & \geq 0, \forall j \\ s \geq 0 \end{array}\right]$$

Non-negative right hand side:

$$\begin{bmatrix} x_1 - x_2 \le -23 \\ x_1, x_2 \ge 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} -x_1 + x_2 \ge 23 \\ x_1, x_2 \ge 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} -x_1 + x_2 - s_4 = 23 \\ x_1, x_2, s_4 \ge 0 \end{bmatrix}$$

• Suppose that some of the variables are unconstrained (here: k < n). Replace x_j with $x_i^1 - x_i^2$ for the corresponding indices:

$$\left[\sum_{\substack{j=1 \ x_j \geq 0, j = 1, \dots, k}}^{n} a_j x_j \leq b \right] \Leftrightarrow \left[\sum_{j=1}^{k} a_j x_j + \sum_{j=k+1}^{n} a_j (x_j^1 - x_j^2) + s = b \right. \\ \left. \begin{array}{c} x_j \geq 0, & j = 1, \dots, k, \\ x_j^1 \geq 0, x_j^2 \geq 0, & j = k+1, \dots, n \\ s \geq 0 \end{array} \right]$$

Sign-restricted (non-negative) variables:

$$\begin{bmatrix} x_1 + x_2 \le 10 \\ x_1 \ge 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x_1 + \frac{x_1^1}{2} - \frac{x_2^2}{2} \le 10 \\ x_1, \frac{x_1^2}{2}, \frac{x_2^2}{2} \ge 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x_1 + x_2^1 - x_2^2 + s_5 = 10 \\ x_1, x_1^2, x_2^2, s_5 \ge 0 \end{bmatrix}$$

Basic feasible solutions (Ch. 4.3)

- Consider m equations with n variables, where $m \le n$
- Set n-m variables to zero and solve (if possible) the remaining $(m \times m)$ system of equations
- If the solution is *unique*, it is called a *basic* solution
- A basic solution corresponds to an *intersection* (feasible $(x \ge 0)$ or infeasible $(x \ge 0)$) of m hyperplanes in \mathbb{R}^m
- Each extreme point of the feasible set is an intersection of m hyperplanes such that all variable values are ≥ 0
- Basic feasible solution ⇔ extreme point of the feasible set

$$a_{11}x_1 + \dots + a_{1n}x_n = b_1$$
 $x_1 \ge 0$
 $a_{21}x_1 + \dots + a_{2n}x_n = b_2$ $x_2 \ge 0$
 \dots \dots
 $a_{m1}x_1 + \dots + a_{mn}x_n = b_m$ $x_n \ge 0$

Basic feasible solutions

• Assume that m < n and that $b_i \ge 0$, i = 1, ..., m, and let

$$\mathbf{c} = \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix}, \mathbf{A} = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix}, \mathbf{b} = \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix}, \mathbf{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}.$$

Consider the linear program to

$$\label{eq:continuity} \begin{aligned} & \underset{\textbf{x}}{\textit{minimize}} & & z = \textbf{c}^{\mathrm{T}}\textbf{x} \\ & \textit{subject to} & & \textbf{A}\textbf{x} = \textbf{b} \\ & & & \textbf{x} \geq \textbf{0} \end{aligned}$$

- Partition **x** into *m* basic variables \mathbf{x}_B and n-m non-basic variables \mathbf{x}_N , such that $\mathbf{x} = (\mathbf{x}_B, \mathbf{x}_N)$.
- Analogously, let $\mathbf{c} = (\mathbf{c}_B, \mathbf{c}_N)$ and $\mathbf{A} = (\mathbf{A}_B, \mathbf{A}_N) \equiv (\mathbf{B}, \mathbf{N})$ The matrix $\mathbf{B} \in \mathbb{R}^{m \times m}$ with inverse \mathbf{B}^{-1} (if it exists)

Basic feasible solutions (Ch. 4.8)

Rewrite the linear program as

$$minimize z = \mathbf{c}_B^{\mathrm{T}} \mathbf{x}_B + \mathbf{c}_N^{\mathrm{T}} \mathbf{x}_N$$
 (1a)

subject to
$$\mathbf{B}\mathbf{x}_B + \mathbf{N}\mathbf{x}_N = \mathbf{b}$$
 (1b)

$$\mathbf{x}_B \geq \mathbf{0}^m, \mathbf{x}_N \geq \mathbf{0}^{n-m} \tag{1c}$$

Multiply the equation (1b) with B^{-1} from the left:

$$\mathbf{B}^{-1}\mathbf{B}\mathbf{x}_{B} + \mathbf{B}^{-1}\mathbf{N}\mathbf{x}_{N} = \mathbf{x}_{B} + \mathbf{B}^{-1}\mathbf{N}\mathbf{x}_{N} = \mathbf{B}^{-1}\mathbf{b}$$

$$\Rightarrow \mathbf{x}_{B} = \mathbf{B}^{-1}\mathbf{b} - \mathbf{B}^{-1}\mathbf{N}\mathbf{x}_{N}$$
(2)

Replace \mathbf{x}_B in (1) by the expression (2):

$$\mathbf{c}_{B}^{\mathrm{T}}\mathbf{x}_{B} + \mathbf{c}_{N}^{\mathrm{T}}\mathbf{x}_{N} = \mathbf{c}_{B}^{\mathrm{T}}\mathbf{B}^{-1}(\mathbf{b} - \mathbf{N}\mathbf{x}_{N}) + \mathbf{c}_{N}^{\mathrm{T}}\mathbf{x}_{N} = \mathbf{c}_{B}^{\mathrm{T}}\mathbf{B}^{-1}\mathbf{b} + (\mathbf{c}_{N}^{\mathrm{T}} - \mathbf{c}_{B}^{\mathrm{T}}\mathbf{B}^{-1}\mathbf{N})\mathbf{x}_{N}$$

$$\Rightarrow \quad \text{minimize} \quad z = \mathbf{c}_{B}^{\mathrm{T}}\mathbf{B}^{-1}\mathbf{b} + (\mathbf{c}_{N}^{\mathrm{T}} - \mathbf{c}_{B}^{\mathrm{T}}\mathbf{B}^{-1}\mathbf{N})\mathbf{x}_{N}$$

$$\quad \text{subject to} \qquad \qquad \mathbf{B}^{-1}\mathbf{b} - \mathbf{B}^{-1}\mathbf{N}\mathbf{x}_{N} \quad > \quad \mathbf{0}^{m}$$

Basic feasible solutions

The rewritten program

minimize
$$z = \mathbf{c}_{B}^{\mathrm{T}} \mathbf{B}^{-1} \mathbf{b} + (\mathbf{c}_{N}^{\mathrm{T}} - \mathbf{c}_{B}^{\mathrm{T}} \mathbf{B}^{-1} \mathbf{N}) \mathbf{x}_{N}$$
 (3a)
subject to $\mathbf{B}^{-1} \mathbf{b} - \mathbf{B}^{-1} \mathbf{N} \mathbf{x}_{N} \geq \mathbf{0}^{m}$ (3b)
 $\mathbf{x}_{N} \geq \mathbf{0}^{n-m}$ (3c)

At the basic solution defined by $B \subset \{1, ..., n\}$:

- Each non-basic variable takes the value 0, i.e., $\mathbf{x}_N = \mathbf{0}$
- The basic variables take the values $\mathbf{x}_{B} = \mathbf{B}^{-1}\mathbf{b} \mathbf{B}^{-1}\mathbf{N}\mathbf{x}_{M} = \mathbf{B}^{-1}\mathbf{b}$
- ullet The value of the objective function is $z=\mathbf{c}_R^{\mathrm{T}}\mathbf{B}^{-1}\mathbf{b}$
- The basic solution is feasible if ${f B}^{-1}{f b} \geq {f 0}^m$

The simplex method: Optimality and feasibility and change of basis (Ch. 4.4)

Optimality condition (for minimization)

The basis B is optimal if $\mathbf{c}_N^{\mathrm{T}} - \mathbf{c}_B^{\mathrm{T}} \mathbf{B}^{-1} \mathbf{N} \geq \mathbf{0}^{n-m}$ (marginal values = reduced costs ≥ 0)

If not, choose as *entering* variable $j \in N$ the one with the lowest (negative) value of the reduced cost $c_j - \mathbf{c}_B^{\mathrm{\scriptscriptstyle T}} \mathbf{B}^{-1} \mathbf{A}_j$

Feasibility condition

For all $i \in B$ it holds that $x_i = (\mathbf{B}^{-1}\mathbf{b})_i - (\mathbf{B}^{-1}\mathbf{A}_j)_i x_j$ Choose the *leaving* variable $i^* \in B$ according to

$$i^* = \arg\min_{i \in B} \left\{ \frac{(\mathbf{B}^{-1}\mathbf{b})_i}{(\mathbf{B}^{-1}\mathbf{A}_j)_i} \middle| (\mathbf{B}^{-1}\mathbf{A}_j)_i > 0
ight\}$$

Basic feasible solutions, example

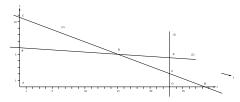
Constraints:

$$x_1 \le 23 (1)$$

 $0.067x_1 + x_2 \le 6 (2)$
 $3x_1 + 8x_2 \le 85 (3)$
 $x_1, x_2 \ge 0$

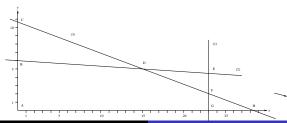
Add slack variables:

$$x_1$$
 $+s_1$ = 23 (1)
 $0.067x_1$ $+x_2$ $+s_2$ = 6 (2)
 $3x_1$ $+8x_2$ $+s_3$ = 85 (3)
 $x_1, x_2, s_1, s_2, s_3 \ge 0$

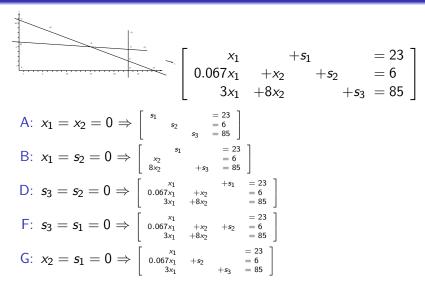


Basic and non-basic variables and solutions

basic variables	basic solution			non-basic variables (0,0)	point	feasible?
$\frac{s_1, s_2, s_3}{s_1, s_2, s_3}$	23	6	85	X_1, X_2	Α	yes
s_1, s_2, s_3 s_1, s_2, x_1	$-5\frac{1}{3}$	$4\frac{1}{9}$	$28\frac{1}{2}$	s_3, x_2	H	no
s_1, s_2, x_2	23	$-4\frac{5}{8}$	$10\frac{3}{8}$	x_1, s_3	C	no
s_1, x_1, s_3	-67	90	-185	s_2, x_2	- 1	no
s_1, x_2, s_3	23	6	37	s_2, x_1	В	yes
x_1, s_2, s_3	23	$4\frac{7}{15}$	16	s_1, x_2	G	yes
x_2, s_2, s_3	-	-	-	s_1, x_1	-	-
x_1, x_2, s_1	15	5	8	s_2, s_3	D	yes
x_1, x_2, s_2	23	2	$2\frac{7}{15}$	s_1, s_3	F	yes
x_1, x_2, s_3	23	$4\frac{7}{15}$	$-19\frac{11}{15}$	s_1, s_2	Е	no



Basic **feasible** solutions correspond to solutions to the system of equations that **fulfil non-negativity**



Basic **infeasible** solutions corresp. to solutions to the system of equations with one or more variables < 0

$$\begin{bmatrix} x_1 & +s_1 & = 23 \\ 0.067x_1 & +x_2 & +s_2 & = 6 \\ 3x_1 & +8x_2 & +s_3 & = 85 \end{bmatrix}$$
H: $x_2 = s_3 = 0 \Rightarrow \begin{bmatrix} x_1 & +s_1 & = 23 \\ 0.067x_1 & +s_2 & = 6 \\ 3x_1 & +s_2 & = 6 \end{bmatrix}$
C: $x_1 = s_3 = 0 \Rightarrow \begin{bmatrix} s_1 & +s_1 & = 23 \\ 8x_2 & +s_2 & = 6 \\ 8x_2 & +s_3 & = 85 \end{bmatrix}$
I: $s_2 = x_2 = 0 \Rightarrow \begin{bmatrix} x_1 & +s_1 & = 23 \\ 8x_2 & +s_3 & = 85 \end{bmatrix}$
-: $s_1 = x_1 = 0 \Rightarrow \begin{bmatrix} x_1 & +s_1 & = 23 \\ 0.067x_1 & = 6 \\ 8x_2 & +s_3 & = 85 \end{bmatrix}$
E: $s_1 = s_2 = 0 \Rightarrow \begin{bmatrix} x_1 & +s_2 & = 6 \\ 8x_2 & +s_3 & = 85 \end{bmatrix}$

Basic feasible solutions and the simplex method

- Express the m basic variables in terms of the n-m non-basic variables
- Example: Start at $x_1 = x_2 = 0 \Rightarrow s_1$, s_2 , s_3 are basic

$$\begin{bmatrix} x_1 & +s_1 & = 23 \\ \frac{1}{15}x_1 & +x_2 & +s_2 & = 6 \\ 3x_1 & +8x_2 & +s_3 & = 85 \end{bmatrix}$$

• Express s_1 , s_2 , and s_3 in terms of x_1 and x_2 (non-basic):

$$\begin{bmatrix} s_1 = 23 & -x_1 \\ s_2 = 6 & -\frac{1}{15}x_1 & -x_2 \\ s_3 = 85 & -3x_1 & -8x_2 \end{bmatrix}$$

- We wish to maximize the objective function $2x_1 + 3x_2$
- Express the objective in terms of the *non-basic* variables: (maximize) $z = 2x_1 + 3x_2 \Leftrightarrow z - 2x_1 - 3x_2 = 0$

Basic feasible solutions and the simplex method

• The first basic solution can be represented as

- Marginal values for increasing the non-basic variables x_1 and x_2 from zero: 2 and 3, resp.
- \Rightarrow Choose x_2 let x_2 enter the basis DRAW GRAPH!!
 - One basic variable $(s_1, s_2, \text{ or } s_3)$ must *leave the basis*. Which?
 - The value of x_2 can increase until some basic variable reaches the value 0:

(2):
$$s_2 = 6 - x_2 \ge 0$$
 $\Rightarrow x_2 \le 6$
(3): $s_3 = 85 - 8x_2 \ge 0$ $\Rightarrow x_2 \le 10\frac{5}{8}$ \Rightarrow $\begin{cases} s_2 = 0 \text{ when} \\ x_2 = 6 \\ \text{ (and } s_3 = 37) \end{cases}$

• s₂ will leave the basis

Change basis through row operations

• Eliminate s_2 from the basis, let x_2 enter the basis using row operations:

- Corresponding basic solution: $s_1 = 23$, $x_2 = 6$, $s_3 = 37$.
- Nonbasic variables: $x_1 = s_2 = 0$
- The marginal value of x_1 is $\frac{9}{5} > 0$. Let x_1 enter the basis
- Which one should leave? s_1 , x_2 , or s_3 ?

Change basis ...

• The value of x_1 can increase until some basic variable reaches the value 0:

$$\begin{array}{lll} (1): s_1 = 23 - x_1 \geq 0 & \Rightarrow x_1 \leq 23 \\ (2): x_2 = 6 - \frac{1}{15}x_1 \geq 0 & \Rightarrow x_1 \leq 90 \\ (3): s_3 = 37 - \frac{37}{15}x_1 \geq 0 & \Rightarrow x_1 \leq 15 \end{array} \right\} \Rightarrow \begin{array}{ll} s_3 = 0 \text{ when} \\ x_1 = 15 \end{array}$$

- x_1 enters the basis and s_3 leaves the basis
- Perform row operations:

Change basis ...

- Let s_2 enter the basis (marginal value > 0)
- The value of s_2 can increase until some basic variable = 0:

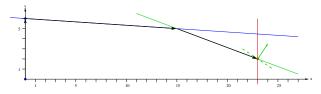
$$\begin{array}{lll} (1): s_1 = 8 - 3.24 s_2 \geq 0 & \Rightarrow s_2 \leq 2.47 \\ (2): x_2 = 5 - 1.22 s_2 \geq 0 & \Rightarrow s_2 \leq 4.10 \\ (3): x_1 = 15 + 3.24 s_2 \geq 0 & \Rightarrow s_2 \geq -4.63 \end{array} \right\} \Rightarrow \begin{array}{ll} s_1 = 0 \text{ when} \\ s_2 = 2.47 \end{array}$$

- s_2 enters the basis and s_1 will leave the basis
- Perform row operations:

Optimal basic solution

$$\begin{array}{c|ccccc}
-z & -0.87s_1 & -0.37s_3 & = & -52 \\
& 0.31s_1 & +s_2 & -0.12s_3 & = & 2.47 \\
& x_2 & -0.37s_1 & +0.12s_3 & = & 2 \\
& x_1 & +s_1 & = & 23
\end{array}$$

- No marginal value is positive. No improvement can be made
- The optimal basis is given by $s_2 = 2.47$, $x_2 = 2$, and $x_1 = 23$
- Non-basic variables: $s_1 = s_3 = 0$
- Optimal value: z = 52



Summary of the solution course

basis	-z	<i>x</i> ₁	<i>X</i> ₂	<i>s</i> ₁	<i>s</i> ₂	s ₃	RHS
-z	1	2	3	0	0	0	0
$\overline{s_1}$	0	1	0	1	0	0	23
<i>s</i> ₂	0	0.067	1	0	1	0	6
s 3	0	3	8	0	0	1	85
-z	1	1.80	0	0	-3	0	-18
s_1	0	1	0	1	0	0	23
x_2	0	0.07	1	0	1	0	6
s 3	0	2.47	0	0	-8	1	37
$\overline{-z}$	1	0	0	0	2.84	-0.73	-45
s_1	0	0	0	1	3.24	-0.41	8
x_2	0	0	1	0	1.22	-0.03	5
X ₁	0	1	0	0	-3.24	0.41	15
-z	1	0	0	-0.87	0	-0.37	-52
	0	0	0	0.31	1	-0.12	2.47
x_2	0	0	1	-0.37	0	0.12	2
X ₁	0	1	0	1	0	0	23

Solve the lego problem using the simplex method!

maximize
$$z=1600x_1+1000x_2$$
 subject to $2x_1+x_2 \leq 6$ $2x_1+2x_2 \leq 8$ $x_1, x_2 \geq 0$

Homework!!