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Linear programs, convex polyhedra, extreme points

A linear optimization model — a linear program .
Expressed in vector

n notation
minimize z = CiX;
> 5% .
j=1 min z=c X
n
. . s.t. Ax <b
subject to Za,-jxj- <bj, i=1....m « >_0,,
J=1 =
7 2> =1,...
20, j=1,...,n c.xER" beRM

A Rm)(n
Gj, ajj, bj: constant parameters <

The feasible region is a polyhedron, X C R’

ZauxJ-Sb,-,sz--wm}Z{XEO”\Axéb}

X = {x > 0"
j=1
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Linear programs, convex polyhedra and extreme points

(Ch. 4.1)

Definition (Convex combination)

A convex combination of the points x?, p=1,..., P, is a point x
that can be expressed as

P
x=> ApxPi Y Ap=1 X\>0,p=1,...,P
p=1 p=1

[DRAW ON THE BOARD]
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Linear programs, convex polyhedra and extreme points
(Ch. 4.1)

Linear constraints form a convex set

The feasible region of a linear program is a convex set, since for
any two feasible points x! and x? and any A € [0,1] it holds that

n n n
Z ajj ()\le +(1- )\)xj2> = A Z ajx; + (1= X) Z ajjx;
j=1 j=1

j=1 =
< Abj+ (1= \)b;
= b, i=1...,m
and
)\le—l—(l—)\)sz > 0, j=1,...,n J

[DRAW ON THE BOARD]
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Linear programs, convex polyhedra and extreme points
(Ch. 4.1)

Definition (Extreme point (Def. 4.2))

The point x¥ is an extreme point of the polyhedron X if xk € X
and it is not possible to express x¥ as a strict convex combination
of two distinct points in X.

l.e: Given x! € X, x?> € X, and 0 < A < 1, it holds that
xK = Ax! 4 (1 — A)x? only if xk = x! = x2.
[DRAW ON THE BOARD]

Theorem (Optimal solution in an extreme point (Th. 4.2))

Assume that the feasible region X = {x > 0" | Ax < b} is
non-empty and bounded. Then, the minimum value of the

T

objective cTx is attained at (at least) one extreme point x¥ of X.

[PROOF ON THE BOARD]
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A general linear program — notation

Definition (Notation of linear programs)

minimize or maximize C;xy + ...+ ChXp
<
subject to  aj1xq + ...+ ainx, = b, i=1,...,m
>
<0
Xj unrestricted insign », j=1...,n
>0
The blue notation refers to the standard form J
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The standard form and the simplex method for linear

programs (Ch. 4.2)

@ Every linear program can be reformulated such that:

e all constraints are expressed as equalities with non-negative
right hand sides
e all variables involved are restricted to be non-negative

@ Referred to as the standard form

@ These requirements streamline the calculations of the simplex
method
e Software solvers (e.g., Cplex, GLPK, Clp, Gurobi) can handle

also inequality constraints and unrestricted variables — the
reformulations are made automatically
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The simplex method—standard form reformulations

@ Slack variables:

n

n .
Sayx < by, Vi 2 e +si =bi Vi
= & | J=1 0 v
N X; > j

.> J =

5 = 0 s >0, Vi

@ The lego example:

2x1 +x < 6 2x1  +xo +s1 = 6
2x1 +2x0 < 8 S | 2 +2x0 +s5 = 8

X1, X2 2 0 X1,X2, 51,52 Z 0

@ s; and sp are called slack variables—they " fill out” the
(positive) distances between the left and right hand sides
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The simplex method—standard form reformulations

@ Surplus variables:

> apx > by, Vi Z g s =bn Vi
j=1 . >0, Vj
. X; ,
X =z 0,V ! >0, Vi
@ Surplus variable s3 (a different example):
x1 + x» > 800 N x1 + x — s3 = 800
xi,x =2 0 X1, x,8 = 0
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The simplex method—standard form reformulations

@ Suppose that b < 0:

: " —» ax; —s =-—b
o<t | [ Dapz-b 2
Jj=1 j=1

x> 0,Y] x 2 0,Y]

@ Non-negative right hand side:

x1—x» < —23 o —x1+x0 >23 N —x1+x0— 54 =23
x1,x2 >0 xy,x2 >0 X1,x2,54 >0
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The simplex method—standard form reformulations

@ Suppose that some of the variables are unconstrained (here: k < n).
Replace x; with le — xj2 for the corresponding indices:

k n
S a3 sl es b

Zajxj <b j=1 j=k+1
= x>0, j=1,...,k,
>0_]—1 ,k lezo,xj?20, j=k+1,...,n
s>0

@ Sign-restricted (non-negative) variables:

x1—|—x21—x22+55 =10

<10 I _x2 <10
|:X1+X2 = :|<:>|:X1 + X5 X5 = :|<:>|: 2
X1, X5, X5, 55 ZO

X1 >0 X17X§7X22 >0
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Basic feasible solutions (Ch. 4.3)

o Consider m equations with n variables, where m < n

@ Set n — m variables to zero and solve (if possible) the
remaining (m x m) system of equations

o If the solution is unique, it is called a basic solution

@ A basic solution corresponds to an intersection (feasible
(x > 0) or infeasible (x # 0)) of m hyperplanes in R™

@ Each extreme point of the feasible set is an intersection of m
hyperplanes such that all variable values are > 0

@ Basic feasible solution < extreme point of the feasible set

anxi+ ...+ ainxn = b x1 20
axi+ ...+ apxp = by x2 >0
amiX1+ ...+ amnXn = bm Xn >0
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Basic feasible solutions

@ Assume that m < nand that b; >0, i=1,...,m, and let
c am ... Adin by X1

= 'X:

Consider the linear program to

minimize z =cTx
X

subject to Ax=Db
x>0

@ Partition x into m basic variables xg and n — m non-basic
variables xp, such that x = (xg, xp).

@ Analogously, let c = (cg,cy) and A = SAB,AN) = (B,N)
@ The matrix B € R™*™ with inverse B~ (if it exists)
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Basic feasible solutions (Ch. 4.8)

Rewrite the linear program as

minimize z = cpxp + CyXp (1a)
subject to Bxg+Nxy = b (1b)
xg >0, xy > 07" (1c)

Multiply the equation (1b) with B~! from the left:
B !Bxg + B !Nxy = xg + B !Nxy =B~!b
= xg = B~1b — B~ INxy (2)
Replace xg in (1) by the expression (2):
cixg+cyxy = c5B7H(b—Nxp)+cyxy = c;B b+(ch—c5B IN)xy
= minimize z=cEB b+ (cfy — cEB7 N)xy
subject to B lb—B INxy > 07

apn_m
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Basic feasible solutions

The rewritten program

minimize z = cgB b+ (cjy — cgB 7 N)xy (3a)
subject to B lb—B !Nxy > 07 (3b)
xy > 0™ (3¢)

At the basic solution defined by B C {1,...,n}:
@ Each non-basic variable takes the value 0, i.e., xjy =0
@ The basic variables take the values
xg =B b — B !Nxy =B~!b
@ The value of the objective function is z = cEB‘lb
@ The basic solution is feasible if B~1b > 0™
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The simplex method: Optimality and feasibility and change
of basis (Ch. 4.4)

Optimality condition (for minimization)

The basis B is optimal if ¢y, — cTBB_lN >Qn-m
(marginal values = reduced costs > 0)

If not, choose as entering variable j € N the one with the
lowest (negative) value of the reduced cost ¢; — c5B~1A;

Feasibility condition
For all i € B it holds that x; = (B~!b); — (B71A,)x;
Choose the leaving variable i* € B according to

(Bflb),'
{ (B7'A))

- .
i = arg min
ieB

(B7'A)); > 0}
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Basic feasible solutions, example

@ Constraints:

X1 < 23 (l)

0.067x; —+ x < 6 (2)

3X1 + 8X2 S 85 (3)

x1,x2 > 0
@ Add slack variables:

X1 +s1 =23 (1)
0.067x1 “+Xo —+5 =6 (2)
3x1 +8xo +s3 =85 (3)

X1,X2,51,5,53 >0
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Basic and non-basic variables and solutions

basic basic solution non-basic point  feasible?

variables variables (0, 0)

51,5,83 23 6 85 X1, X2 A yes
s1,8,x —5% 4% 281 53, X2 H no
51,52, X2 23 —4% 10% X1, 53 C no
S51,X1,83 —67 90 —185 52, X2 | no
S1, X2, S3 23 6 37 S, X1 B yes
X1,52,53 23 4115 16 51, X2 G yes
X2,52,53 - - - 51, X1 - -
X1, X2, S1 15 5 8 $, S3 D yes
X1, X2, 52 23 2 2% 51,53 F yes
x1,%,8 23 4L —19% 51,5 E no

9 u
T T N
is 2 2
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Basic feasible solutions correspond to solutions to the

system of equations that fulfil non-negativity

_ X1 +s1 =23
0.067x1 “+X2 +5 =6
3x; +8x +s3 =85
=23
AZX1:X2:0:>[51 P :6:|
s3 =85
=23
B:X1:52:0:>{XZ B :6:|
8xo +s3 =85
X + =23
D: S3 =5 = 0= { 0‘067)& +x2 B =6 ]
3x1 +8x2 =85
X =23
F: s3=51=0= { 0.067  +x2 4% -6 ]
3x1 +8x2 =85

Lecture 3
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Basic infeasible solutions corresp. to solutions to the

system of equations with one or more variables < 0

- X1 +s1 =23
0.067x1 —+Xo +5 =
3x; +8x +s3 =85
[ X: +s =23 ]
H: o =53 =0 = | 00674 = +s —o6
3x1 =85
s; =23
C X1:53:0:> X2 b +s =6 :|
8% =85
[ X1 +s =23
D s =x=0= 0.0675 ' =6
3x1 +s3 =285
0 =23
- s1=x1=0= x2 48 =6
8xo +s3 =285
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Basic feasible solutions and the simplex method

@ Express the m basic variables in terms of the n — m non-basic
variables

@ Example: Start at x; = x» = 0 = s1, s», s3 are basic

X1 +51 =23
Ex +x +s2 =06
3x1 +8xo +s3 =285

@ Express s1, sp, and s3 in terms of x; and xp (non-basic):

51 = 23 —X1
sS= 6 —%Xl —X
53 = 8b —3X1 —8X2

@ We wish to maximize the objective function 2x; + 3x»
@ Express the objective in terms of the non-basic variables:
(maximize) z=2x3 + 3x & z—2x1—3x% =0

Lecture 3 Linear and Integer Optimization with Applications



Basic feasible solutions and the simplex method

@ The first basic solution can be represented as

-z +2x1  +3x =01 (0)
X1 +51 =231 (1)

T15X1 -+ X2 + S =06 (2)

3x1  +8x +s3 =8b (3)

@ Marginal values for increasing the non-basic variables x; and
xp from zero: 2 and 3, resp.
= Choose x, — let x» enter the basis DRrAW GRAPH!!
@ One basic variable (s, sp, or s3) must leave the basis. Which?
@ The value of xo can increase until some basic variable reaches
the value 0:

(2):52:6—X220 =x <6 }:> S2:0When

=6
: = — > < ] X2
(3) S3 85—-8x >0 = x < 108 (and 55 = 37)

@ sy will leave the basis
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Change basis through row operations

Eliminate s, from the basis, let x enter the basis using row
operations:
-z  42x1 +3x = 0| (0)
X1 +s1 = 23 | (1)
%Xl +X2 +5 = 6| (2)
3x1 +8x +s3 | = 85 | (3)
—z +3x —3s, = -18 ] (0) —3-(2)
X1 +51 = 23 | (1)-0:(2)
%Xl +Xxo +5 = 6 (2)
15X1 —8s +s53| = 37 (3)—8-(2)

Corresponding basic solution: s; = 23, x, = 6, s3 = 37.

Nonbasic variables: x; = s, =0

The marginal value of xj is % > 0. Let x; enter the basis

@ Which one should leave? sy, xo, or s37

Lecture 3
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Change basis ...

—z +ix —3sp = —18|(0)
X1 451 = 23 1 (1)
%i;xl —+Xo +5o = 6 (2)
15X1 —8s, +s3 | = 37 (3)
@ The value of x; can increase until some basic variable reaches
the value O:
1 51—23—x1>0 =x1 <23
E2§ x2—6— x1>0 :>x1<90}:> 53:(1\/\1/2(3“
(3) : 53—37— x>0 =x <15 =
@ xj enters the basis and s3 leaves the basis
@ Perform row operations:
—z +2.84s, —0.73s3 | = —45](0)—(3)-32-2
s1 +3.24s, —04ls3 | = 8| (1)-(3)- %%
X2 +1.22s5 —0.03s3 | = 51(2)-03) 3 1
X1 —3.24s, +0.41s3 | = 15| (3)-8
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Change basis ...

-z +2.84s, —0.73s3 | = —45 | (0)
s1 +3.24sy —0.41s3 | = 3 (1)

X2 +1.22sp —0.03s3 | = 5 (2)

X1 —3.24s, +041s3 | = 15| (3)

@ Let s, enter the basis (marginal value > 0)

@ The value of s, can increase until some basic variable = 0:

(1) 151 =8-3245,>0 = 5 <247
(2)i%=5-1225%>0 =s<4.10 } - :_OZWL:‘;”
(3):x =15+3245 >0 =s > —4.63 2=
@ sp enters the basis and s; will leave the basis
@ Perform row operations:
—z —0.8751 —0.37s3 | = =52 (0)—(1)- 557
03ls; +s; —0.12s3 | = 247 | (1)55
xy —0.37s 1+0.12s53 | = 2| (2)-(1) 32
X1 +51 = 23 (3)+(1)
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Optimal basic solution

—z —0.87s1 —0.37s3 | = =52
0.31s; +s» —0.12s3 | = 2.47

xo —0.37s; +0.12s3 | = 2

X1 +51 = 23

No marginal value is positive. No improvement can be made
The optimal basis is given by s, = 2.47, xo = 2, and x; = 23
Non-basic variables: s; = s3 =0

Optimal value: z =52
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Summary of the solution course

basis \ —z X1 X2 51 ) 53 \ RHS
-z 1 2 3 0 0 0 0
s1 0 1 0 1 0 0 23
S 0 0067 1 0 1 0 6
S3 0 3 8 0 0 1 85
—z 1 180 O 0 -3 0 -18
s1 0 1 0 1 0 0 23
Xo 0 007 1 0 1 0 6
S3 0 247 O 0 -8 1 37
—z 1 0 0 0 284 -0.73 | -45
s1 0 0 0 1 3.24 -041 8
X2 0 0 1 0 1.22  -0.03 5
X1 0 1 0 0 -324 041 15
—z 1 0 0 -087 0 -0.37 | -52
) 0 0 0 031 1 -0.12 | 2.47
X2 0 0 1 -0.37 0 0.12 2
X1 0 1 0 1 0 0 23

Lecture 3 Linear and Integer Optimization with Applications



Solve the lego problem using the simplex method!

maximize z = 1600x; + 1000x»
subject to 2x1 + X < 6
2x1 + 2% < 8
x1, x2 > 0
HOMEWORK!!
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