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Modelling with integer variables (Ch. 13.1)

Variables

Linear programming (LP) uses continuous variables: xij ≥ 0

Integer linear programming (ILP) use also integer, binary, and
discrete variables

If both continuous and integer variables are used in a
program, it is called a mixed integer (linear) program (MILP)

Constraints

In an ILP (or MILP) it is possible to model linear constraints,
but also logical relations as, e.g. if–then and either–or

This is done by introducing additional binary variables and
additional constraints
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Mixed integer modelling—fixed charges

Send a truck ⇒ Start–up cost f > 0

Load bread loafs ⇒ cost p > 0 per loaf

x = # bread loafs to transport from bakery to store

x

c(x)

f
f + px

M

The cost function c : R+ 7→ R+ is nonlinear and discontinuos

c(x) :=

{

0 if x = 0
f + px if 0 < x ≤ M
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Integer linear programming modelling—fixed charges

Let y = # trucks to send (here y equals 0 or 1)

Replace c(x) by fy + px

Constraints: 0 ≤ x ≤ My and y ∈ {0, 1}

New model:

min fy + px
s.t. x −My ≤ 0

x ≥ 0
y ∈ {0, 1}

y = 0 ⇒ x = 0 ⇒ fy + px = 0

y = 1 ⇒ x ≤ M ⇒ fy + px = f + px

x > 0 ⇒ y = 1 ⇒ fy + px = f + px

x = 0 6⇒ y = 0 But: Minimization will push y to zero!
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Discrete alternatives

Suppose:
either x1 + 2x2 ≤ 4 or 5x1 + 3x2 ≤ 10,
and x1, x2 ≥ 0 must hold

Not a convex set x1

x2

Let M ≫ 1 and define y ∈ {0, 1}

⇒ New constraint set:









x1 + 2x2 −My ≤ 4
5x1 + 3x2 −M(1− y) ≤ 10

y ∈ {0, 1}
x1, x2 ≥ 0









y =

{

0 ⇒ x1 + 2x2 ≤ 4 must hold
1 ⇒ 5x1 + 3x2 ≤ 10 must hold
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Exercises: Homework

1 Suppose that you are interested in choosing from a set of
investments {1, . . . , 7} using 0− 1 variables. Model the
following constraints.

1 You cannot invest in all of them
2 You must choose at least one of them
3 Investment 1 cannot be chosen if investment 3 is chosen
4 Investment 4 can be chosen only if investment 2 is also chosen
5 You must choose either both investment 1 and 5 or neither
6 You must choose either at least one of the investments 1, 2

and 3 or at least two investments from 2, 4, 5 and 6

2 Formulate the following as mixed integer progams
1 u = min{x1, x2}, assuming that 0 ≤ xj ≤ C for j = 1, 2
2 v = |x1 − x2| with 0 ≤ xj ≤ C for j = 1, 2
3 The set X \ {x∗} where X = {x ∈ Z n|Ax ≤ b} and x∗ ∈ X
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Linear programming: A small example

1 2 4 5 6 7

2

5

3

1

3

4

6

x

y

(0)

(1)

(2)(3)
(4)

(5)

(x∗

, y∗) maximize x + 2y (0)
subject to x + y ≤ 10 (1)

−x + 3y ≤ 9 (2)
x ≤ 7 (3)

x , y ≥ 0 (4, 5)

Optimal solution: (x∗, y∗) = (51
4 , 4

3
4 )

Optimal objective value: 143
4
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Integer linear programming: A small example

1 2 4 5 6 7

1

2

3

4

5

3
x

y

(0)

(1)

(2)(3)
(4)

(5)

(x∗

, y∗)

maximize x + 2y (0)
subject to x + y ≤ 10 (1)

−x + 3y ≤ 9 (2)
x ≤ 7 (3)

x , y ≥ 0 (4, 5)
x , y integer

What if the variables are forced to be integral?

Optimal solution: (x∗, y∗) = (6, 4)

Optimal objective value: 14 < 143
4

The optimal value decreases (possibly constant) when the
variables are restricted to possess only integral values
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ILP: Solution by the branch–and–bound algorithm
(e.g., Cplex, XpressMP, or GLPK) (Ch. 15.1–15.2)

Relax integrality requirements ⇒
linear, continuous problem ⇒ (x , y) = (51

4 , 4
3
4 ), z = 143

4

Search tree: branch over
fractional variable values

1 2 4 5 6 7

1

2

3

4

5

3
x

y fractional

fractional

not feasibleinteger

integer

x ≤ 5 x ≥ 6

y ≤ 4 y ≥ 5

(x , y) = (5, 4 2
3 ), z = 14 1

3

(x , y) = (6, 4), z = 14

(x , y) = (5, 4), z = 13
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The knapsack problem—budget constraints (Ch. 13.2)

Select an optimal collection of objects or investments or
projects or ...

cj = benefit of choosing object j , j = 1, . . . , n

Limits on the budget

aj = cost of object j , j = 1, . . . , n
b = total budget

Variables: xj =

{

1, if object j is chosen,
0, otherwise.

j = 1, . . . , n

Objective function: max
∑n

j=1 cjxj

Budget constraint:
∑n

j=1 ajxj ≤ b

Binary variables: xj ∈ {0, 1}, j = 1, . . . , n
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Computational complexity (Ch. 2.6)

A small knapsack instance

z∗1 = max 213x1 + 1928x2 + 11111x3 + 2345x4 + 9123x5
subject to 12223x1+12224x2+36674x3+61119x4+85569x5 ≤ 89 643 482

x1, . . . , x5 ≥ 0, integer

Optimal solution x∗ = (0, 1, 2444, 0, 0), z∗1 = 27 157 212
Cplex finds this solution in 0.015 seconds

The equality version

z∗2 = max 213x1 + 1928x2 + 11111x3 + 2345x4 + 9123x5
subject to 12223x1+12224x2+36674x3+61119x4+85569x5 = 89 643 482

x1, . . . , x5 ≥ 0, integer

Optimal solution x∗ = (7334, 0, 0, 0, 0), z∗2 = 1 562 142
Cplex computations interrupted after 1700 sec. (≈ 1

2 hour)
No integer solution found
Best upper bound found: 25 821 000
55 863 802 branch–and–bound nodes visited
Only one feasible solution exists!
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Computational complexity

Mathematical insight yields successful algorithms

Example: Assignment problem: Assign n persons to n jobs.

# feasible solutions: n! ⇒ Combinatorial explosion

An algorithm ∃ that solves this problem in time O(n4) ∝ n4

Complete enumeration of all solutions is not efficient

n 2 5 8 10 100 1000

n! 2 120 40000 3600000 9.3 · 10157 4.0 · 102567

2n 4 32 256 1024 1.3 · 1030 1.1 · 10301

n4 16 625 4100 10000 1.0 · 108 1.0 · 1012

n log n 0.6 3.5 7.2 10 200 3000

Binary knapsack: O(2n)

Continuous knapsack (sorting of
cj
aj
): O(n log n)
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The set covering problem (Ch. 13.8)

A number (n) of items and a cost for each item

A number (m) of subsets of the n items

Find a selection of the items such that each subset contains at
least one selected item and such that the total cost for the
selected items is minimized

1

1

2

2

m

n
c1 c2 cn

su
b
se
ts

elements

costs
· · · · · ·· · ·· · ·· · ·

...

...

...
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The set covering problem (Ch. 13.8)

1

1

2

2

m

n
c1 c2 cn

su
b
se
ts

elements

costs
· · · · · ·· · ·· · ·· · ·

......

...

Mathematical formulation

min cTx

subject to Ax ≥ 1

x binary

c ∈ R
n and 1 = (1, . . . , 1)T ∈ R

m are constant vectors
A ∈ R

m×n is a matrix with entries aij ∈ {0, 1}
x ∈ R

n is the vector of variables
Related models: set partitioning (Ax = 1), set packing
(Ax ≤ 1)
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Example: Installing security telephones

The road administration wants to install emergency telephones
such that each street has access to at least one phone

It is logical to place the phones at street crossings

Each crossing has an installation cost: c = (2, 2, 3, 4, 3, 2, 2, 1)

Find the cheapest selection of crossings to provide all streets
with phones

1 3

4 5

6 87

2

Street A Street B

Street G

Street KStreet J

St
re

et
 E

St
re

et
 F

St
re
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re

et
 C
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re

et 
D

Model

Define variables and
constraints
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Installing security telephones: Mathematical model

Binary variables for each crossing: xj = 1 if a phone is
installed at j , xj = 0 otherwise.

For each street, introduce a constraint saying that a phone
should be placed at—at least—one of its crossings:

A: x1 + x2 ≥ 1
B: x2 + x3 ≥ 1
C: x1 + x6 ≥ 1
D: x2 + x6 ≥ 1
E: x2 + x4 ≥ 1
F: x4 + x7 ≥ 1

G: x4 + x5 ≥ 1
H: x3 + x5 ≥ 1
I: x5 + x8 ≥ 1
J: x6 + x7 ≥ 1
K: x7 + x8 ≥ 1

1 3

4 5

6 87

2

Street A Street B

Street G

Street KStreet J
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re

et
 E
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re
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et
 H
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et
 C
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re

et 
D

Objective function:
min 2x1 + 2x2 + 3x3 + 4x4 + 3x5 + 2x6 + 2x7 + x8

An optimal solution: x2 = x5 = x6 = x7 = 1,
x1 = x3 = x4 = x8 = 0. Objective value: 9.
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More modelling examples (Ch. 13.3)

Given three telephone companies A, B and, C which charge a
fixed start-up price of 16, 25 and, 18, respectively

For each minute of call-time A, B, and, C charge 0.25, 0.21
and, 0.22

We want to phone 200 minutes. Which company should we
choose?

xi = number of minutes called by i ∈ {A,B ,C}

Binary variables yi = 1 if xi > 0, yi = 0 otherwise (pay
start-up price only if calls are made with company i)

Mathematical model

min 0.25x1 + 0.21x2 + 0.22x3 + 16y1 + 25y2 + 18y3
subject to x1 + x2 + x3 = 200

0 ≤ xi ≤ 200yi , i = 1, 2, 3
yi ∈ {0, 1}, i = 1, 2, 3
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More modelling examples (2) (Ch. 13.9)

Process three jobs on one machine

Each job j has a processing time pj , a due date dj , and a
penalty cost cj if the due date is missed

How should the jobs be scheduled to minimize the total
penalty cost?

Processing Due date Late penalty
Job time (days) (days) $/day

1 5 25 19
2 20 22 12
3 15 35 34

Homework!
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The assignment model (Ch. 13.5)

Assign each task to one resource, and each resource to one task

A cost cij for assigning task i to resource j , i , j ∈ {1, . . . , n}

Variables: xij =

{

1, if task i is assigned to resource j
0, otherwise

min

n
∑

i=1

n
∑

j=1

cijxij

subject to
n

∑

j=1

xij = 1, i = 1, . . . , n

n
∑

i=1

xij = 1, j = 1, . . . , n

xij ≥ 0, i , j = 1, . . . , n
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The assignment model

Choose one element from each row and each column

1

2

1

2

nn

c11 : x11

cnn : xnn

c11 c12 c13

c21 c22c23

c31 c32 c33

cn1cn2 cn3

c1n

c2n

c3n

cnn

This integer linear model has integral extreme points, since it
can be formulated as a network flow problem

Therefore, it can be efficiently solved using specialized
(network) linear programming techniques

Even more efficient special purpose
(primal–dual–graph-based) algorithms exist
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The travelling salesperson problem (TSP) (Ch. 13.10)

Given n cities and connections between all cities (distances on
each connection)

Find shortest tour that passes through all the cities

1

3
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1220
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∞

∞

A problem that is very easy to describe and understand but
very difficult to solve (combinatorial explosion)

∃ different versions of TSP: Euclidean, metric, symmetric, ...
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An ILP formulation of the TSP problem

Let the distance from city i to city j be dij

Introduce a binary variable xij for each connection

Let V = {1, . . . , n} denote the set of nodes (cities)

min
∑

i∈V

∑

j∈V

dijxij ,

s.t.
∑

j∈V

xij = 1, i ∈ V , (1)

∑

i∈V

xij = 1, j ∈ V , (2)
∑

i∈U,j∈V \U

xij ≥ 1, ∀U ⊂ V : 2 ≤ |U| ≤ |V | − 2, (3)

xij binary i , j ∈ V (4)
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An ILP formulation of the TSP problem

min
∑

i∈V

∑

j∈V

dijxij ,

s.t.
∑

j∈V

xij = 1, i ∈ V , (1)

∑

i∈V

xij = 1, j ∈ V , (2)
∑

i∈U,j∈V \U

xij ≥ 1, ∀U ⊂ V : 2 ≤ |U| ≤ |V | − 2, (3)

xij binary i , j ∈ V (4)

Cf. the assignment problem Draw graph * 2 !

Enter and leave each city exactly once ⇔ (1) and (2) Draw!

Constraints (3): subtour elimination Draw!

Alternative formulation of (3): Draw!
∑

(i ,j)∈U xij ≤ |U| − 1, ∀U ⊂ V : 2 ≤ |U| ≤ |V | − 2

Lecture 5 Linear and integer optimization with applications


