MVE165/MMG631 Linear and integer optimization with applications Lecture 5 Discrete optimization models and applications; complexity

Ann-Brith Strömberg

2015-04-21

Variables

- Linear programming (LP) uses continuous variables: $x_{ij} \ge 0$
- Integer linear programming (ILP) use also integer, binary, and discrete variables
- If both continuous and integer variables are used in a program, it is called a *mixed integer (linear) program* (MILP)

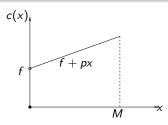
Constraints

- In an ILP (or MILP) it is possible to model linear constraints, but also logical relations as, e.g. if-then and either-or
- This is done by introducing additional binary variables and additional constraints

(Ch. 13.1)

Mixed integer modelling—fixed charges

- Send a truck \Rightarrow Start-up cost f > 0
- Load bread loafs \Rightarrow cost p > 0 per loaf
- x = # bread loafs to transport from bakery to store



The cost function $c : \mathbb{R}_+ \mapsto \mathbb{R}_+$ is *nonlinear* and *discontinuos*

$$c(x) := \begin{cases} 0 & \text{if } x = 0\\ f + px & \text{if } 0 < x \le M \end{cases}$$

Integer linear programming modelling—fixed charges

- Let y = # trucks to send (here y equals 0 or 1)
- Replace c(x) by fy + px

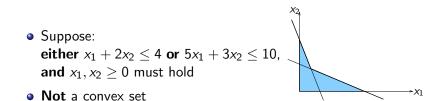
• Constraints: $0 \le x \le My$ and $y \in \{0, 1\}$

	min	fy + px		
New model:	s.t.	x - My	\leq	0
New model.		X	\geq	0
		у	\in	$\{0,1\}$

• $y = 0 \Rightarrow x = 0 \Rightarrow fy + px = 0$ • $y = 1 \Rightarrow x \le M \Rightarrow fy + px = f + px$ • $x > 0 \Rightarrow y = 1 \Rightarrow fy + px = f + px$

• $x = 0 \Rightarrow y = 0$ But: Minimization will push y to zero!

Discrete alternatives



Let $M \gg 1$ and define $y \in \{0, 1\}$

$$\Rightarrow \text{ New constraint set:} \begin{bmatrix} x_1 + 2x_2 & -My & \leq 4 \\ 5x_1 + 3x_2 & -M(1-y) & \leq 10 \\ y & \in \{0,1\} \\ x_1, x_2 & \geq 0 \end{bmatrix}$$

• $y = \begin{cases} 0 \Rightarrow x_1 + 2x_2 \leq 4 \text{ must hold} \\ 1 \Rightarrow 5x_1 + 3x_2 \leq 10 \text{ must hold} \end{cases}$

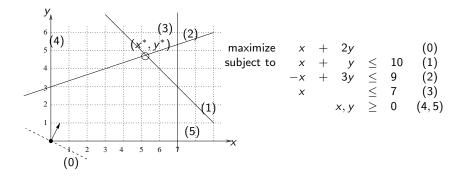
Exercises: Homework

- Suppose that you are interested in choosing from a set of investments {1,...,7} using 0 1 variables. Model the following constraints.
 - You cannot invest in all of them
 - You must choose at least one of them
 - Investment 1 cannot be chosen if investment 3 is chosen
 - Investment 4 can be chosen only if investment 2 is also chosen
 - You must choose either both investment 1 and 5 or neither
 - You must choose either at least one of the investments 1, 2 and 3 or at least two investments from 2, 4, 5 and 6
- Pormulate the following as mixed integer progams

•
$$u = \min\{x_1, x_2\}$$
, assuming that $0 \le x_j \le C$ for $j = 1, 2$

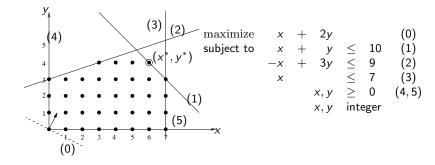
- ② $v = |x_1 x_2|$ with 0 ≤ x_j ≤ C for j = 1, 2
- **③** The set $X \setminus \{x^*\}$ where $X = \{x \in Z^n | Ax \le b\}$ and $x^* \in X$

Linear programming: A small example



- Optimal solution: $(x^*, y^*) = (5\frac{1}{4}, 4\frac{3}{4})$
- Optimal objective value: $14\frac{3}{4}$

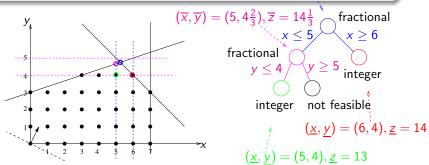
Integer linear programming: A small example



- What if the variables are forced to be integral?
- Optimal solution: $(x^*, y^*) = (6, 4)$
- Optimal objective value: $14 < 14\frac{3}{4}$
- The optimal value decreases (possibly constant) when the variables are restricted to possess only integral values

ILP: Solution by the branch–and–bound algorithm (e.g., Cplex, XpressMP, or GLPK) (Ch. 15.1–15.2)

- Relax integrality requirements \Rightarrow linear, continuous problem $\Rightarrow (\overline{x}, \overline{y}) = (5\frac{1}{4}, 4\frac{3}{4}), \overline{z} = 14\frac{3}{4}$
- Search tree: branch over fractional variable values



The knapsack problem—budget constraints

 Select an optimal collection of objects or investments or projects or ...

• c_j = benefit of choosing object $j, j = 1, \ldots, n$

Limits on the budget

• $a_j = \text{cost of object } j, j = 1, \dots, n$

- b = total budget
- Variables: $x_j = \begin{cases} 1, & \text{if object } j \text{ is chosen}, \\ 0, & \text{otherwise.} \end{cases}$ • Objective function: $\max \sum_{j=1}^n c_j x_j$ • Budget constraint: $\sum_{j=1}^n a_j x_j \leq b$ • Binary variables: $x_j \in \{0, 1\}, j = 1, \dots, n$

(Ch. 13.2)

Computational complexity

(Ch. 2.6)

A small knapsack instance

$z_1^* = \max$	$213x_1 + 1928x_2 + 11111x_3 + 2345x_4 + 9123x_5$		
subject to	$12223x_1 + 12224x_2 + 36674x_3 + 61119x_4 + 85569x_5$	\leq	89 643 482
	x_1,\ldots,x_5	\geq	0, integer

- Optimal solution $\mathbf{x}^* = (0, 1, 2444, 0, 0), \ z_1^* = 27 \ 157 \ 212$
- Cplex finds this solution in 0.015 seconds

The equality version

$z_2^* = \max$	$213x_1 + 1928x_2 + 11111x_3 + 2345x_4 + 9123x_5$		
subject to	$12223x_1 + 12224x_2 + 36674x_3 + 61119x_4 + 85569x_5$	=	89 643 482
	x_1,\ldots,x_5	\geq	0 , integer

- Optimal solution $\mathbf{x}^* = (7334, 0, 0, 0, 0), z_2^* = 1562142$
- Cplex computations interrupted after 1700 sec. ($\approx \frac{1}{2}$ hour)
 - No integer solution found
 - Best upper bound found: 25 821 000
 - 55 863 802 branch-and-bound nodes visited
 - Only one feasible solution exists!

Computational complexity

- Mathematical insight yields successful algorithms
- Example: Assignment problem: Assign *n* persons to *n* jobs.
- # feasible solutions: $n! \Rightarrow$ Combinatorial explosion
- $\bullet\,$ An algorithm \exists that solves this problem in time ${\cal O}(n^4)\propto n^4$

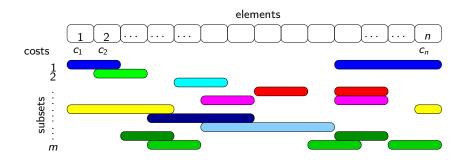
Complete enumeration of all solutions is <i>not</i> efficient						
п	2	5	8	10	100	1000
<u>n!</u>	2	120	40000	3600000	$9.3 \cdot 10^{157}$	$4.0 \cdot 10^{2567}$
2 ⁿ	4	32	256	1024	$1.3\cdot10^{30}$	$1.1 \cdot 10^{301}$
n^4	16	625	4100	10000	$1.0 \cdot 10^{8}$	$1.0\cdot10^{12}$
n log n	0.6	3.5	7.2	10	200	3000

- Binary knapsack: $\mathcal{O}(2^n)$
- Continuous knapsack (sorting of $\frac{c_j}{a_i}$): $\mathcal{O}(n \log n)$

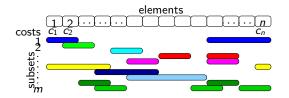
The set covering problem

(Ch. 13.8)

- A number (n) of items and a cost for each item
- A number (m) of subsets of the n items
- Find a selection of the items such that each subset contains at least one selected item and such that the total cost for the selected items is minimized



The set covering problem



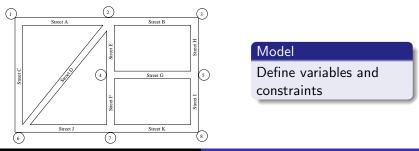
Mathematical formulation

$$\begin{array}{lll} \mbox{min} & \mbox{c}^{\rm T} \mbox{x} \\ \mbox{subject to} & \mbox{Ax} & \geq \mbox{1} \\ & \mbox{x} & \mbox{binary} \end{array}$$

- $\mathbf{c} \in \mathbb{R}^n$ and $\mathbf{1} = (1, \dots, 1)^{\mathrm{T}} \in \mathbb{R}^m$ are constant vectors
- $\mathbf{A} \in \mathbb{R}^{m \times n}$ is a matrix with entries $a_{ij} \in \{0, 1\}$
- $\mathbf{x} \in \mathbb{R}^n$ is the vector of variables
- Related models: set partitioning (Ax = 1), set packing (Ax \leq 1)

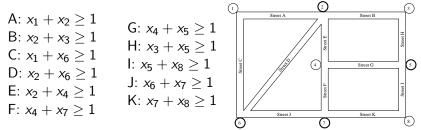
Example: Installing security telephones

- The road administration wants to install emergency telephones such that each street has access to at least one phone
- It is logical to place the phones at street crossings
- Each crossing has an installation cost: $\mathbf{c} = (2, 2, 3, 4, 3, 2, 2, 1)$
- Find the cheapest selection of crossings to provide all streets with phones



Installing security telephones: Mathematical model

- Binary variables for each crossing: x_j = 1 if a phone is installed at j, x_j = 0 otherwise.
- For each street, introduce a constraint saying that a phone should be placed at—at least—one of its crossings:



- Objective function: min $2x_1 + 2x_2 + 3x_3 + 4x_4 + 3x_5 + 2x_6 + 2x_7 + x_8$
- An optimal solution: $x_2 = x_5 = x_6 = x_7 = 1$, $x_1 = x_3 = x_4 = x_8 = 0$. Objective value: 9.

More modelling examples

(Ch. 13.3)

- Given three telephone companies A, B and, C which charge a fixed start-up price of 16, 25 and, 18, respectively
- For each minute of call-time A, B, and, C charge 0.25, 0.21 and, 0.22
- We want to phone 200 minutes. Which company should we choose?
- x_i = number of minutes called by $i \in \{A, B, C\}$
- Binary variables y_i = 1 if x_i > 0, y_i = 0 otherwise (pay start-up price only if calls are made with company i)

Mathematical model

Process three jobs on one machine

- Each job *j* has a processing time *p_j*, a due date *d_j*, and a penalty cost *c_j* if the due date is missed
- How should the jobs be scheduled to minimize the total penalty cost?

	Processing	Due date	Late penalty
Job	time (days)	(days)	\$/day
1	5	25	19
2	20	22	12
3	15	35	34

HOMEWORK!

(Ch. 13.9)

Assign each task to one resource, and each resource to one task

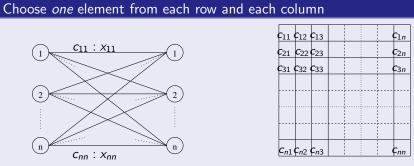
• A cost c_{ii} for assigning task *i* to resource *j*, $i, j \in \{1, \ldots, n\}$ • Variables: $x_{ij} = \begin{cases} 1, & \text{if task } i \text{ is assigned to resource } j \\ 0, & \text{otherwise} \end{cases}$

n

SI

n n

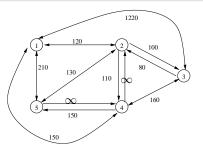
The assignment model



- This integer linear model has integral extreme points, since it can be formulated as a network flow problem
- Therefore, it can be efficiently solved using specialized (network) linear programming techniques
- Even more efficient special purpose (primal-dual-graph-based) algorithms exist

The travelling salesperson problem (TSP)

- Given *n* cities and connections between all cities (distances on each connection)
- Find shortest tour that passes through all the cities



- A problem that is very easy to describe and understand but very difficult to solve (combinatorial explosion)
- ∃ different versions of TSP: Euclidean, metric, symmetric, ...

(Ch. 13.10)

An ILP formulation of the TSP problem

- Let the distance from city *i* to city *j* be *d_{ij}*
- Introduce a binary variable x_{ij} for each connection
- Let $V = \{1, ..., n\}$ denote the set of nodes (cities)

$$\begin{array}{rcl} \min & \sum\limits_{i \in V} \sum\limits_{j \in V} d_{ij} x_{ij}, \\ \text{s.t.} & \sum\limits_{j \in V} x_{ij} = 1, \quad i \in V, \\ & \sum\limits_{i \in V} x_{ij} = 1, \quad j \in V, \\ & \sum\limits_{i \in U, j \in V \setminus U} x_{ij} \geq 1, \quad \forall U \subset V : 2 \leq |U| \leq |V| - 2, \\ & x_{ij} \quad \text{binary} \quad i, j \in V \end{array}$$

$$\begin{array}{rcl} (1) \\ (2) \\ (2) \\ (2) \\ (3) \\ (4) \end{array}$$

An ILP formulation of the TSP problem

$$\begin{array}{rcl} \min & \sum\limits_{i \in V} \sum\limits_{j \in V} d_{ij} x_{ij}, \\ \text{s.t.} & \sum\limits_{j \in V} x_{ij} = 1, \quad i \in V, \\ & \sum\limits_{i \in V} x_{ij} = 1, \quad j \in V, \\ & \sum\limits_{i \in U, j \in V \setminus U} x_{ij} \geq 1, \quad \forall U \subset V : 2 \leq |U| \leq |V| - 2, \quad (3) \\ & x_{ij} \quad \text{binary} \quad i, j \in V \end{array}$$

