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Modelling with integer variables (Ch. 13.1)

@ Linear programming (LP) uses continuous variables: x;; > 0
® Integer linear programming (ILP) use also integer, binary, and
discrete variables

@ If both continuous and integer variables are used in a
program, it is called a mixed integer (linear) program (MILP)

@ In an ILP (or MILP) it is possible to model linear constraints,
but also logical relations as, e.g. if-then and either—or

@ This is done by introducing additional binary variables and
additional constraints
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Mixed integer modelling—fixed charges

@ Send a truck = Start—up cost f > 0
@ Load bread loafs = cost p > 0 per loaf

@ x = # bread loafs to transport from bakery to store

c(x)

The cost function ¢ : Ry — R, is nonlinear and discontinuos

C(X)::{o if x=0

f+px if 0<x<M
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Integer linear programming modelling—fixed charges

@ Let y = # trucks to send (here y equals 0 or 1)

@ Replace c(x) by fy + px
@ Constraints: 0 < x < My and y € {0,1}

New model:

o y=0
oy=1
o x>0

o x=0

Rl R

min

s.t.
x=0 =
x<M =
y=1 =
y=20

fy + px
x—My < 0

x > 0

y € {01}
fy + px =

fy + px =f + px
fy + px = f + px

But: Minimization will push y to zero!
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Discrete alternatives

X
@ Suppose:
either x; +2x; < 4 or 5x; + 3x, < 10,
and x3, xo > 0 must hold
@ Not a convex set X1
Let M > 1 and define y € {0,1}
X1 + 2xo —My < 4
= New constraint set: P i e _M(l - y) =
y € {0,1}
X1, X2 > 0
o v — 0 = x1+2x <4 must hold
Y=11 = 5x1 +3x» < 10 must hold
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Exercises: Homework

© Suppose that you are interested in choosing from a set of
investments {1,...,7} using 0 — 1 variables. Model the
following constraints.

You cannot invest in all of them

You must choose at least one of them

Investment 1 cannot be chosen if investment 3 is chosen

Investment 4 can be chosen only if investment 2 is also chosen

You must choose either both investment 1 and 5 or neither

You must choose either at least one of the investments 1, 2

and 3 or at least two investments from 2, 4, 5 and 6

00000

© Formulate the following as mixed integer progams
@ u=min{x;,x2}, assuming that 0 < x; < C for j = 1,2
QO v=|xg—x|with0<x; <Cforj=1,2
O Theset X\ {x*} where X = {x € Z"|Ax < b} and x* € X
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Linear programming: A small example

maximize x + 2y (0)
subject to x + y < 10 (1)
—x 4+ 3 < 9 (2
X < 7 3)
Xy 2 0 (475)
< X
\1\\2 3 4 5 6 4
(0)
@ Optimal solution: (x*,y*) = (5%’4%)

@ Optimal objective value: 14%
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Integer linear programming: A small example

maximize  x + 2y (0)
subjectto x + y < 10 (1)
-x + 3y < 9 (2)
X < 7 (3)
x,y > 0 (4,5
X,y integer

\*1\\\2 3
0)"

@ What if the variables are forced to be integral?

@ Optimal solution: (x*, y*) = (6,4)

@ Optimal objective value: 14 < 14%

@ The optimal value decreases (possibly constant) when the
variables are restricted to possess only integral values
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ILP: Solution by the branch—and—bound algorithm

(e.g., Cplex, XpressMP, or GLPK) (Ch. 15.1-15.2)

® Relax integrality requirements =

@ Search tree: branch over
fractional variable values

)y >5.
y =4,V = Yinteger

. h
integer not feasible
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The knapsack problem—budget constraints (Ch

@ Select an optimal collection of objects or investments or
projects or ...
o ¢j = benefit of choosing object j, j=1,...,n
@ Limits on the budget
@ aj = cost of object j, j=1,...,n
@ b = total budget
. 1, if object j is chosen, .
@ Variables: x; = ’ jectJ T j=1,...,n
0, otherwise.
@ Objective function: max 7 GiXj
@ Budget constraint: Z};l ajx; < b
@ Binary variables: x;€{0,1}, j=1,...,n
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Computational complexity

A small knapsack instance

213x1 4+ 1928x> + 11111x3 + 2345x3 + 9123xs5

12223x1 +12224x,4+36674x3 +61119x4 +85569xs <
Xly-oo, X5 =

z{ = max
subject to

89 643 482
0, integer

@ Optimal solution x* = (0, 1,2444,0,0), zf = 27 157 212
@ Cplex finds this solution in 0.015 seconds

The equality version
213x1 + 1928x, + 11111x3 + 2345x4 + 9123x5

12223x; +12224x, +36674x3 +61119x4 +85569x5 =
X1,...,X5 > 0,integer

zy = max
subject to

89 643 482

@ Optimal solution x* = (7334,0,0,0,0), z; =1 562 142
@ Cplex computations interrupted after 1700 sec. (
No integer solution found

Best upper bound found: 25 821 000

55 863 802 branch—and—bound nodes visited
Only one feasible solution exists!
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Computational complexity

@ Mathematical insight yields successful algorithms
@ Example: Assignment problem: Assign n persons to n jobs.

@ # feasible solutions: n! = Combinatorial explosion

@ An algorithm 3 that solves this problem in time O(n*) oc n*

Complete enumeration of all solutions is not efficient

n | 2] 5] 8 | 10 | 100 | 1000
n! 2 | 120 | 40000 | 3600000 | 9.3 - 105" | 4.0 - 10°%°7
2 4 | 32 | 256 1024 1.3-10% | 1.1.10%%
n* 16 | 625 | 4100 | 10000 1.0-10% | 1.0-1012
nlogn | 0.6 | 3.5 7.2 10 200 3000

@ Binary knapsack: O(2")

@ Continuous knapsack (sorting of :—j) O(nlogn)
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The set covering problem

@ A number (n) of items and a cost for each item
@ A number (m) of subsets of the n items

@ Find a selection of the items such that each subset contains at
least one selected item and such that the total cost for the
selected items is minimized

(CEX:)

elements

o Lo L L L e
costs C1 (&) Cn
| —
2
E)
aasTr S

subsets
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The set covering problem

elements

costs C1 €2

Mathematical formulation

min cTx
subjectto Ax > 1
x  binary
@ ceR"and 1 =(1,...,1)T € R™ are constant vectors

@ A € R™*" is a matrix with entries a; € {0,1}

@ x € R" is the vector of variables

@ Related models: set partitioning (Ax = 1), set packing
(Ax <1)
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Example: Installing security telephones

@ The road administration wants to install emergency telephones
such that each street has access to at least one phone

@ It is logical to place the phones at street crossings
@ Each crossing has an installation cost: ¢ = (2,2,3,4,3,2,2,1)

@ Find the cheapest selection of crossings to provide all streets
with phones

1 @ 3
Street A Street B
¥ & T O) Define variables and
@ .
. B} constraints
¥ j
& @
Street J Street K
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Installing security telephones: Mathematical model

@ Binary variables for each crossing: x; = 1 if a phone is
installed at j, x; = 0 otherwise.

@ For each street, introduce a constraint saying that a phone
should be placed at—at least—one of its crossings:

1 3

AX X >1 Street A Street B
Lo 2 Gixs+x>1 .
Bixo+x32>1 . 3
H: x5+ x5 > 1 B g
Cxi+x>1 o %
i x5 +xg > 1 ¥ & Ss ©
D:xo+x>1 7
Jixg+x72>1 . .
E:ixo+x4>1 K: x4 xa > 1 g g
Fixg+x7 21 e = S S
O] © :

@ Objective function:

min 2X1 + 2X2 + 3X3 + 4x4 + 3X5 + 2X6 + 2X7 + Xg
@ An optimal solution: x; = x5 = x6 = x7 = 1,

x1 = x3 = x4 = xg = 0. Objective value: 9.
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More modelling examples (Ch. 13.3)

@ Given three telephone companies A, B and, C which charge a
fixed start-up price of 16, 25 and, 18, respectively

@ For each minute of call-time A, B, and, C charge 0.25, 0.21
and, 0.22

@ We want to phone 200 minutes. Which company should we
choose?

@ x; = number of minutes called by i € {A, B, C}
@ Binary variables y; = 1 if x; > 0, y; = 0 otherwise (pay
start-up price only if calls are made with company /)

Mathematical model

min O.25X1 + O.21X2 + O.22X3 + 16y1 i 25y2 i 18y3
subject to x1+x+x3 = 200

0<x < 200y;, i=1,2,3

yi € {0,1}, i=1,23
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More modelling examples (2) (Ch. 13.9)

Process three jobs on one machine

@ Each job j has a processing time p;, a due date d;, and a
penalty cost ¢; if the due date is missed

@ How should the jobs be scheduled to minimize the total
penalty cost?

Processing Due date Late penalty

Job time (days)  (days) $/day
1 5 25 19
2 20 22 12
3 15 35 34
HOMEWORK!
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The assignment model (Ch. 13.5)

Assign each task to one resource, and each resource to one task

@ A cost cjj for assigning task i to resource j, i,j € {1,...,n}

1, if task / is assigned to resource j

@ Variables: xj; = { 0. otherwise
M

n n
min g E Cij Xij

i=1 j=1

n
subject to Zx,-j = 1, i=1,...,n
j=1

n
dxp =1, j=1...,n
i=1

xj > 0, ihj=1,...,n
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The assignment model

Choose one element from each row and each colum

C11 €12

£13

n

20

£21 |C22

€23

Con

€31 €32

€33

C3n

Cn1€n2

Cn3

Enn

@ This integer linear model has integral extreme points, since it
can be formulated as a network flow problem

@ Therefore, it can be efficiently solved using specialized
(network) linear programming techniques

@ Even more efficient special purpose
(primal—dual—graph-based) algorithms exist
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The travelling salesperson problem (TSP) (Ch. 13.10)

@ Given n cities and connections between all cities (distances on
each connection)

@ Find shortest tour that passes through all the cities

@ A problem that is very easy to describe and understand but
very difficult to solve (combinatorial explosion)

o d different versions of TSP: Euclidean, metric, symmetric, ...
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An ILP formulation of the TSP problem

@ Let the distance from city i to city j be dj;
@ Introduce a binary variable x;; for each connection
o Let V ={1,...,n} denote the set of nodes (cities)

min > Y djxj,

ievjev
s.t. Yoxj =1, ieV, (1)
jev
> xj = 1, jeV, (2)
eV
xj > 1, YUcCcV:2<|Ul<|V|-2, (3)
ieUjeV\U
xjj binary i,jeV (4)

Lecture 5 Linear and integer optimization with applications



An ILP formulation of the TSP problem

min - 32 > dixi,
ievjev
s.t. Yoxj =1, eV, (1)
jev
Yoxj =1, jeV, (2)
ieVv
xj > 1, YUcV:2<|Ul<|V|-2, (3)
ieUjev\U
xj binary i,jeV (4)

o Cf. the assignment problem ‘DRAW GRAPH * 2 !‘

@ Enter and leave each city exactly once < (1) and (2)
@ Constraints (3): subtour elimination
@ Alternative formulation of (3):

SineuXi SIUI—1, YUCV:2< U< |V|-2
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