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Overview

Relaxations: cutting planes and Lagrangean duals

TSP and routing problems

Branch–and–bound for structured problems
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Good and ideal formulations (Ch. 14.3)

Ax ≤ b

Ideal since all extreme

points are integral

The linear program has

integer extreme points
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Cutting planes: A very small example

Consider the following ILP:

min{−x1 − x2 : 2x1 + 4x2 ≤ 7, x1, x2 ≥ 0 and integer}

ILP optimal solution: z = −3, x = (3, 0)

LP (continuous relaxation) optimum: z = −3.5, x = (3.5, 0)

Generate a simple cut

“Divide the constraint” by 2
and round the RHS down

x1 + 2x2 ≤ 3.5 ⇒ x1 + 2x2 ≤ 3

Adding this cut to the
continuous relaxation yields
the optimal ILP solution
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Cutting planes: valid inequalities (Ch. 14.4)

Consider the ILP

max 7x1 + 10x2
subject to −x1 + 3x2 ≤ 6 (1)

7x1 + x2 ≤ 35 (2)
x1, x2 ≥ 0, integer

LP optimum: z = 66.5, x = (4.5, 3.5)
ILP optimum: z = 58, x = (4, 3)

Generate a VI:

“Add” the two constraints (1) and
(2): 6x1 + 4x2 ≤ 41 ⇒
3x1 + 2x2 ≤ 20 ⇒ x = (4.36, 3.45)

Generate another VI:

“7·(1)+(2)”: 22x2 ≤ 77 ⇒ x2 ≤ 3
⇒ x = (4.57, 3)

(1)
(2)
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Cutting plane algorithms (iterativley better approximations

of the convex hull) (Ch. 14.5)

Choose a suitable mathematical formulation of the problem

A general cutting plane algorithm

1 Solve the linear programming (LP) relaxation

2 If the solution is integer, STOP. An optimal solution is found

3 Add one or several valid inequalities that cut off the fractional
solution but none of the integer solutions

4 Resolve the new problem and go to step 2.

Remark: An inequality in higher dimensions defines a
hyper-plane; therefore the name cutting plane
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About cutting plane algorithms

Problem: It may be necessary to generate VERY MANY cuts

Each cut should also pass through at least one integer point
⇒ faster convergence

Methods for generating valid inequalities

Chvatal-Gomory cuts (combine constraints, make beneficial
roundings of LHS and RHS)
Gomory’s method: generate cuts from an optimal simplex basis
(Ch. 14.5.1)

Pure cutting plane algorithms are usually less efficient than
branch–&–bound

In commercial solvers (e.g. CPLEX), cuts are used to help
(presolve) the branch–&–bound algorithm

For problems with specific structures (e.g. TSP and set
covering) problem specific classes of cuts are used
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Lagrangian relaxation (⇒ optimistic estimates of z∗)

(Ch. 17.1–17.2)

Consider a minimization integer linear program (ILP)

[ILP] z∗ = min cTx
subject to Ax ≤ b (1)

Dx ≤ d (2)
x ≥ 0 and integer

Assume that the constraints (1) are complicating (subtour
eliminating constraints for TSP, e.g.)

Define the set X = {x ∈ Z n
+ |Dx ≤ d}

Remove the constraints (1) and add them—with penalty
parameters v—to the objective function

h(v) = min
x∈X

{

cTx+ vT(Ax− b)
}

(3)
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Weak duality of Lagrangian relaxations

Theorem

For any v ≥ 0 it holds that h(v) ≤ z∗.

Bevis.

Let x be feasible in [ILP] ⇒ x ∈ X and Ax ≤ b. It then holds that

h(v) = min
x∈X

{

cTx+ vT(Ax− b)
}

≤ cTx+ vT(Ax− b) ≤ cTx.

Since an optimal solution x∗ to [ILP] is also feasible, it holds that
h(v) ≤ cTx∗ = z∗.

⇒ h(v) is a lower bound on the optimal value z∗ for any v ≥ 0

The best lower bound is given by

h∗ = max
v≥0

h(v) = max
v≥0

{

min
x∈X

{

cTx+ vT(Ax− b)
}

}

≤ z∗
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Tractable Lagrangian relaxations

Special algorithms for minimizing the Lagrangian dual
function h exist (e.g., subgradient optimization, Ch. 17.3)

h is always concave but typically nondifferentiable

For each value of v chosen, a subproblem (3) must be solved

For general ILP’s: typically a non-zero duality gap h∗ < z∗

The Lagrangian relaxation bound is never worse that the
linear programming relaxation bound, i.e. zLP ≤ h∗ ≤ z∗

If the set X has the integrality property (i.e., XLP has integral
extreme points) then h∗ = zLP

Choose the constraints (Ax ≤ b) to dualize such that the
relaxed problem (3) is computationally tractable but still does
not possess the integrality property
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An ILP Example

[Homework]

Find optimistic and pessimistic bounds for the following ILP
example using the branch–&–bound algorithm, a cutting plane
algorithm, and Lagrangean relaxation.

max 5x1 + 4x2
s.t. x1 + x2 ≤ 5

10x1 + 6x2 ≤ 45
x1, x2 ≥ 0 and integer

The linear programming optimal solution is given by z = 23.75,
x1 = 3.75 and x2 = 1.25
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The assignment model (Ch. 13.5)

Assign each task to one resource, and each resource to one task

Linear cost cij for assigning task i to resource j ,
i , j ∈ {1, . . . , n}

Variables: xij =

{

1, if task i is assigned to resource j

0, otherwise

The mathematical model

min

n
∑

i=1

n
∑

j=1

cijxij

subject to

n
∑

j=1

xij = 1, i = 1, . . . , n

n
∑

i=1

xij = 1, j = 1, . . . , n

xij ≥ 0, i , j = 1, . . . , n
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The assignment model

Choose one element from each row and each column

1

2

1

2

nn

c11 : x11

cnn : xnn

c11 c12 c13

c21 c22c23

c31 c32 c33

cn1cn2 cn3

c1n

c2n

c3n

cnn

This integer linear model has integral extreme points, since it
can be formulated as a network flow problem (Ch. 8) which
has a unimodular constraint matrix (Def. 8.1)

Can be efficiently solved using, e.g., the network simplex
algorithm

More efficient special purpose (primal–dual–graph-based)
algorithms exist
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The travelling salesperson problem (TSP, Ch. 13.10)

Given n cities and connections between all cities (distances on
each connection)

Find the shortest tour that passes through all the cities

1

3

45

2
120

210
130

150

110

100

80

160

1220

150

∞

∞

Complexity: NP-hard due to the combinatorial explosion
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An ILP formulation of the TSP problem

Let the distance from city i to city j be dij
Introduce binary variables xij for each connection
Let V = {1, . . . , n} denote the set of nodes (cities)

min
∑

i∈V

∑

j∈V

dijxij , (0)

s.t.
∑

j∈V

xij = 1, i ∈ V , (1)
∑

i∈V

xij = 1, j ∈ V , (2)
∑

i∈U,j∈V\U

xij ≥ 1, ∀U ⊂ V : 2 ≤ |U | ≤ |V | − 2, (3)

xij ∈ {0, 1}, i , j ∈ V (4)

Cf. the assignment problem

Enter and leave each city exactly once ⇔ (1) and (2)
Constraints (3): subtour elimination
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Solution methods for the TSP Problem

Tailored branch–&–bound (Ch. 15)

Heuristics

Constructive heuristics (Ch. 16.3)
Local search heuristics (Ch. 16.4)
Approximation algorithms (Ch. 16.6)
Metaheuristics (Ch. 16.5)

. . .

Common difficulty for all solution methods for the TSP:
Combinatorial explosion: # possible tours ≈ n!

⇒ Very many subtour elimination constraints (3)
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Branch–and–bound algorithm for TSP (Ch. 15.4.2)

Relaxing just the binary constraints (4) in TSP does not yield
a tractable problem, since the number of subtour elinimating
constraints (3) is very large

⇒ An LP with very many constraints

Relaxing the subtour eliminating constraints (3) yields an
assignment problem, which can be solved in polynomial time

Solutions to a relaxed problem typically contains a number of
sub-tours

Branch on these sub-tours (rather than on fractional variables)

Branching ⇔ partitioning of the solution space

Draw an example
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