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Convex sets

A set S is convex if, for any elements x, y ∈ S it holds that

αx+ (1− α)y ∈ S for all 0 ≤ α ≤ 1

Examples:

xx

x

y
y

y

Convex sets Non-convex sets

⇒ Integrality requirements ⇒ nonconvex feasible set
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Local vs. global optima

Consider a minimization problem

min
x∈X

cTx

Global optimum:
A solution x∗ ∈ X such that cTx∗ ≤ cTx for all x ∈ X

ε-neighbourhood of x̄: Nε(x̄) =
{

x ∈ X
∣

∣ ‖x − x̄‖ ≤ ε
}

The distance measure ‖x− x̄‖ may be “freely” defined as,
e.g., # arcs differing (Hamming distance), Euclidean,
Manhattan, 2-interchange, ...

Local optimum:
A solution x̄ ∈ X such that cTx̄ ≤ cTx for all x ∈ Nε(x̄) for
some ε > 0
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Heuristic algorithms

Optimization problems with high complexity may be too time
consuming to solve to optimality

Heuristic algorithms can be utilized

But: Only local optimality can then be guaranteed
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Heuristics I: Constructive heuristics (Ch. 16.3)

Consider a minimization problem

min
x∈X

cTx

Start by an “empty set” and “add” elements according to
some (simple) rule

Sometimes no guarantee that even a feasible solution will be
found

No measure of how “close” to a global optimum a solution is

Special rules for structured problems

E.g. the greedy algorithm is a constructive heuristic (finds,
however, optimal solution to minimum spanning tree)

For TSP: nearest neighbour, cheapest insertion, farthest
insertion, etc

Example!
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Heuristics II: Local search (Ch. 16.4)

Consider a minimization problem

min
x∈X

cTx

Start from a feasible solution, which is iteratively improved by
limited modifications

Finds a local optimum

No measure on how close to a global optimum a solution is

Specialized for structured problems, but also general (Ch.
16.2)

For TSP: e.g. 2-interchange, 3-interchange,

Example!
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Local search heuristic algorithm (Ch. 16.4)

Consider a minimization problem

min
x∈X

cTx

A general local search algorithm

0. Initialization: Choose a feasible solution x0 ∈ X . Let k = 0.

1. Find all feasible points in an ε-neighbourhood Nε(x
k) of xk

2. If cTx ≥ cTxk for all x ∈ X ∩ Nε(x
k) ⇒ Stop. xk is a local

optimum (w.r.t. Nε)

3. Choose xk+1 ∈ X ∩ Nε(x
k) such that cTxk+1 < cTxk

4. Let k := k + 1 and go to step 1
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Heuristics III: Approximation algorithms (Ch. 16.6)

Consider a minimization problem

min
x∈X

cTx

Properties of approximations algorithms

Performance guarantee:
z̄ − z∗

z∗
≤ α for some 0 < α ≤ 1

Specialized algorithms for structured problems
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Example of an approximation algorithm

The spanning tree approximation algorithm for the TSP

Need some more definitions for this: Spanning trees and
greedy algorithms
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The minimum spanning tree (MST) problem

Given an undirected graph G = (N,E ) with nodes N, edges E
and distances dij for each edge (i , j) ∈ E

Find a subset of the edges that connects all nodes at
minimum total distance

The number of edges in a spanning tree is |N| − 1

A (spanning) tree contains no cycles

MST is a very simple problem (a matroid) that can be solved
by greedy algorithms
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Greedy algorithms for MST

Prim’s algorithm

1 Start at an arbitrary node

2 Among the nodes that are not yet connected, choose the one
that can be connected at minimum cost

3 Stop when all nodes are connected

Solve an example!

Kruskal’s algorithm

1 Sort the edges by increasing distances

2 Choose edges starting from the beginning of the list; skip
edges resulting in cycles

3 Stop when all nodes are connected

Solve an example!
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Spanning tree approximation algorithm for the TSP

Consider a TSP on an undirected graph G = (N,E , c)

Assume

G complete ⇔ edges between all pairs of nodes

∆-inequality: cij ≤ cik + ckj for all i , j , k ∈ N Draw!

Algorithm

1 Find a minimum spanning tree T ⊂ E on G

2 Create a multigraph G ′ using two copies of each edge in T

3 Find an Eulerian walk of G ′ and and embedded TSP-tour

Not longer than twice the optimal tour:

Guarantee:
z̄ − z∗

z∗
≤ 1

Example!
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Performance guarantee for the spanning tree
approximation for TSP

Theorem

z̄ − z∗

z∗
≤ 1

Bevis.

Let c(TSP) = z∗ and c(tour) = z̄

A spanning tree is a relaxation of a TSP:
All soubtour elimination constraints are fulfilled, but not the
node valence (2 edges incident to each node)

⇒ c(MST) ≤ c(TSP)

Two copies of each edge ⇒ c(tour) ≤ 2c(MST) ≤ 2c(TSP)

⇒
c(tour)− c(TSP)

c(TSP)
≤ 1
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Heuristics IV: Metaheuristics (Ch. 16.5)

Consider a minimization problem

min
x∈X

cTx

Metaheuristics intend to be more efficient than just plain local
search methods

Includes tabu search, simulated annealing
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More about heuristics

Start using a constructive heuristic ⇒ feasible solution

The choice of definition of a neighbourhood is model specific
(e.g. Euclidean distance, number of arcs differing, )

Apply a local search algorithm

Finds a locally optimal solution

No guarantee to find global optimal solutions

Extensions (e.g. tabu search): Temporarily allow worse
solutions to “move away” from a local optimum (Ch. 16.5)

Larger neighbourhoods yield better local optima, but takes
more computation time to explore
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The historical development of TSP solution

Optimal solutions to TSP’s of different sizes found

year n

1954 49
1962 33
1977 120
1987 532
1987 666
1987 2392
1994 7397
1998 13509
2001 15112
2004 24978

2005/06 85900
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The worlds largest TSP solved “so far” (2004) ...

A TSP of 24 978 cities and villages (red houses) in Sweden

Optimal tour: ≈ 72 500 km (855597 TSP LIB units)

The tour of length 855 597 was found in March 2003
(Lin-Kernighan’s TSP heuristic)

It was proven in May 2004 that no shorter tour exists

A variety of heuristics, B&B, and cut generation algorithms

The final stages that improved the lower bound from 855 595
up to 855 597 required ≈ 8 years of computation time
(running in parallel on a network of Linux workstations)

“Without knowledge of the 855 597 tour we would not have

made the decision to carry out this final computation”

New record in 2005/06: 85 900 locations in a VLSI
application www.tsp.gatech.edu/pla85900

www.tsp.gatech.edu, iPhone/iPad App: Concorde TSP
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