MVE165/MMG631 Linear and integer optimization with applications Lecture 8 Combinatorial optimization theory and algorithms

Ann-Brith Strömberg

2015-04-30

Convexity

Local and global optima

Heuristics

- I Constructive heuristics
- II Local search methods
- III Approximation algorithms
- IV Meta-heuristics

Convex sets

A set S is convex if, for any elements $\mathbf{x}, \mathbf{y} \in S$ it holds that

$$lpha \mathbf{x} + (1 - lpha) \mathbf{y} \in S$$
 for all $0 \le lpha \le 1$

 \Rightarrow Integrality requirements \Rightarrow nonconvex feasible set

Consider a minimization problem

$$\min_{\mathbf{x}\in X} \mathbf{c}^{\mathrm{T}}\mathbf{x}$$

• Global optimum:

A solution $\mathbf{x}^* \in X$ such that $\mathbf{c}^{\mathrm{T}}\mathbf{x}^* \leq \mathbf{c}^{\mathrm{T}}\mathbf{x}$ for all $\mathbf{x} \in X$

- ε -neighbourhood of $\bar{\mathbf{x}}$: $N_{\varepsilon}(\bar{\mathbf{x}}) = \{\mathbf{x} \in X \mid ||\mathbf{x} \bar{\mathbf{x}}|| \le \varepsilon\}$
- The distance measure ||x x̄|| may be "freely" defined as, e.g., # arcs differing (Hamming distance), Euclidean, Manhattan, 2-interchange, ...
- Local optimum:

A solution $\bar{\mathbf{x}} \in X$ such that $\mathbf{c}^{\mathrm{T}} \bar{\mathbf{x}} \leq \mathbf{c}^{\mathrm{T}} \mathbf{x}$ for all $\mathbf{x} \in N_{\varepsilon}(\bar{\mathbf{x}})$ for some $\varepsilon > 0$

- Optimization problems with high complexity may be too time consuming to solve to optimality
- Heuristic algorithms can be utilized
- But: Only local optimality can then be guaranteed

Heuristics I: Constructive heuristics

Consider a minimization problem	
min x∈X	c ^T x
- Charle in the set "set and	"

- Start by an "empty set" and "add" elements according to some (simple) rule
- Sometimes no guarantee that even a feasible solution will be found
- No measure of how "close" to a global optimum a solution is
- Special rules for structured problems
- E.g. the greedy algorithm is a constructive heuristic (finds, however, optimal solution to minimum spanning tree)
- For TSP: nearest neighbour, cheapest insertion, farthest insertion, etc
- Example!

(Ch. 16.3)

Consider a minimization problem

$$\min_{\mathbf{x}\in X} \mathbf{c}^{\mathrm{T}}\mathbf{x}$$

- Start from a feasible solution, which is iteratively improved by limited modifications
- Finds a local optimum
- No measure on how close to a global optimum a solution is
- Specialized for structured problems, but also general (Ch. 16.2)
- For TSP: e.g. 2-interchange, 3-interchange,
- Example!

(Ch. 16.4)

Consider a minimization problem

$$\min_{\mathbf{x}\in X} \mathbf{c}^{\mathrm{T}}\mathbf{x}$$

A general local search algorithm

- 0. Initialization: Choose a feasible solution $\mathbf{x}^0 \in X$. Let k = 0.
- 1. Find all feasible points in an ε -neighbourhood $N_{\varepsilon}(\mathbf{x}^k)$ of \mathbf{x}^k
- 2. If $\mathbf{c}^{\mathrm{T}}\mathbf{x} \ge \mathbf{c}^{\mathrm{T}}\mathbf{x}^{k}$ for all $\mathbf{x} \in X \cap N_{\varepsilon}(\mathbf{x}^{k}) \Rightarrow$ Stop. \mathbf{x}^{k} is a local optimum (w.r.t. N_{ε})
- 3. Choose $\mathbf{x}^{k+1} \in X \cap N_{\varepsilon}(\mathbf{x}^k)$ such that $\mathbf{c}^{\mathrm{T}}\mathbf{x}^{k+1} < \mathbf{c}^{\mathrm{T}}\mathbf{x}^k$
- 4. Let k := k + 1 and go to step 1

(Ch. 16.4)

Consider a minimization problem	
$\min_{\mathbf{x}\in X}$	c ^T x

Properties of approximations algorithms

- Performance guarantee: $\frac{\bar{z} z^*}{z^*} \le \alpha$ for some $0 < \alpha \le 1$
- Specialized algorithms for structured problems

(Ch. 16.6)

Example of an approximation algorithm

- The spanning tree approximation algorithm for the TSP
- Need some more definitions for this: Spanning trees and greedy algorithms

The minimum spanning tree (MST) problem

- Given an undirected graph G = (N, E) with nodes N, edges E and distances d_{ij} for each edge (i, j) ∈ E
- Find a subset of the edges that connects all nodes at minimum total distance
- The number of edges in a spanning tree is |N| 1
- A (spanning) tree contains no cycles
- MST is a very simple problem (a matroid) that can be solved by *greedy algorithms*

Greedy algorithms for MST

Prim's algorithm

- Start at an arbitrary node
- Among the nodes that are not yet connected, choose the one that can be connected at minimum cost
- Stop when all nodes are connected

Solve an example!

Kruskal's algorithm

- Sort the edges by increasing distances
- Choose edges starting from the beginning of the list; skip edges resulting in cycles
- Stop when all nodes are connected

Solve an example!

Spanning tree approximation algorithm for the TSP

Consider a TSP on an undirected graph $G = (N, E, \mathbf{c})$

Assume

- G complete \Leftrightarrow edges between all pairs of nodes
- Δ -inequality: $c_{ij} \leq c_{ik} + c_{kj}$ for all $i, j, k \in N$

DRAW!

Algorithm

- Find a minimum spanning tree $T \subset E$ on G
- 2 Create a multigraph G' using two copies of each edge in T
- Sind an Eulerian walk of G' and and embedded TSP-tour

Not longer than twice the optimal tour:

Guarantee:
$$\frac{\overline{z} - z^*}{z^*} \leq 1$$

• Example!

Performance guarantee for the spanning tree approximation for TSP

Theorem

$$\frac{\bar{z}-z^*}{z^*} \le 1$$

Bevis.

- Let $c(\mathsf{TSP}) = z^*$ and $c(\mathsf{tour}) = \bar{z}$
- A spanning tree is a relaxation of a TSP: All soubtour elimination constraints are fulfilled, but not the node valence (2 edges incident to each node)
- $\Rightarrow c(MST) \leq c(TSP)$
- Two copies of each edge $\Rightarrow c(tour) \le 2c(MST) \le 2c(TSP)$ $\Rightarrow \frac{c(tour) - c(TSP)}{c(TSP)} \le 1$

Consider a minimization problem	
min x∈X	c ^T x

- Metaheuristics intend to be more efficient than just plain local search methods
- Includes tabu search, simulated annealing

- $\bullet\,$ Start using a constructive heuristic \Rightarrow feasible solution
- The choice of definition of a neighbourhood is model specific (e.g. Euclidean distance, number of arcs differing,)
- Apply a local search algorithm
- Finds a *locally* optimal solution
- No guarantee to find global optimal solutions
- Extensions (e.g. tabu search): Temporarily allow worse solutions to "move away" from a local optimum (Ch. 16.5)
- Larger neighbourhoods yield better local optima, but takes more computation time to explore

The historical development of TSP solution

Optimal solutions to TSP's of different sizes found

year	п	
1954	49	
1962	33	
1977	120	
1987	532	
1987	666	
1987	2392	
1994	7397	
1998	13509	
2001	15112	
2004	24978	
2005/06	85900	

Lecture 8 Linear and integer optimization with applications

The worlds largest TSP solved "so far" (2004) ...

- A TSP of 24 978 cities and villages (red houses) in Sweden
- Optimal tour: \approx 72 500 km (855597 TSP LIB units)
- The tour of length 855 597 was found in March 2003 (Lin-Kernighan's TSP heuristic)
- It was proven in May 2004 that no shorter tour exists
- A variety of heuristics, B&B, and cut generation algorithms
- The final stages that improved the lower bound from 855 595 up to 855 597 required ≈ 8 years of computation time (running in parallel on a network of Linux workstations)
 "Without knowledge of the 855 597 tour we would not have made the decision to carry out this final computation"
- New record in 2005/06: 85 900 locations in a VLSI application www.tsp.gatech.edu/pla85900
- www.tsp.gatech.edu, iPhone/iPad App: Concorde TSP