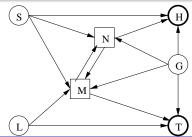

MVE165/MMG631 Linear and integer optimization with applications Lecture 10 Shortest paths; dynamic programming; linear programming formulations of network flows

Ann-Brith Strömberg

2017-04-28


Flows in networks, in particular shortest paths

A path from node 5 to node 3

A flow network

- Supply nodes: S, G, L
- Demand nodes: H, T
- Storage (intermediate): M, N
- Limited capacities on links
- Minimize costs for transport and storage

Many different problems can be formulated as graph or network flow models

- Find the total capacity of a given water pipeline network
- Find a time schedule (starting and completion times) for the activities in a project
- How much goods should be transported from each supplier to each point of demand in a transportation system, and which links should be used to what extent

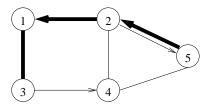
Question:

In terms of networks

- What question do we ask?
- Discuss with your neigbour!
- Suggestions?

Cotoborg Cotoborg Huvudentré, Göteborg Datim	Sök resa				
Onsdag, 23 ⇒VI2U14, 12-XU Arg. Restle Restle Bestern 12-26 0:19 0 0 I Buss 1 Nordsan, GOUEborg Bathgenska Huzether, Udether Image: Colspan="2">Image: Colspan="2">Colspan="2" 12-27 12-24 0:14 0 I Spansen 7: Contralistationen, Udether Udether Udether Udether Sahlgrenska Huzether Udether Udether Udether Udether 12-28 12:41 0:13 Udether Udether Udether		,	Huvu	dentré,	
Image Image Image Image Image 12:26 12:45 0:19 0 Buss 16 12:45 0:10 0 Sahigenska Hundenrik, Görleborg \$750 m 5 12:27 12:41 0:14 0 Spårvagn 7 Contralistationen, Görleborg Sahigrenska Hundenrik, Görleborg Sahigrenska Hundenrik, Görleborg 12:28 12:41 0:13 0		april 201	4, 12:40	-	2
Buss 15 Nordstan, Göteborg Sahiyeeska kuvudentik, Göteborg Spårvagn 7 Centralistationen, Göteborg Sahigrenska Huvudentré, Göteborg 12:28 12:41 0:13 0	Avg.	Ank.	Restid	Byten	Or
Nordstan, Göteborg 750 m Satigmenia Haudentik, Göteborg Cartholistania Bahgrenska Huvudentik, Göteborg Sahlgrenska Huvudentik, Göteborg 12:28 12:41 0:13 0	12:26	12:45	0:19	0	
 Spårvagn 7 Centralstationen, Göteborg Sahigrenska Huvudentré, Göteborg 12:28 12:41 0:13 	Nordstan, G			750 m	0:
Centralstationen, Göteborg Sahlgrenska Huvudentré, Göteborg 12:28 12:41 0:13 0	12:27	12:41	0:14	0	
Sahlgrenska Huvudentré, Göteborg 12:28 12:41 0:13 0			bora		
				borg	
		12:41	0:13	0	
	12:28				
Centralstationen, Göteborg Sahlgrenska Huvudentré, Göteborg	🔁 Spårvagr				

The shortest path problem: a useful application



A number of "short" (or fast) paths that

- depart at the earliest "now", and
- arrive at the latest "around 12:40"

Shortest path problem—properties & solution

• What properties of the problem can we utilize to construct an efficient solution method for the shortest path problem?

۲

Discuss

• ... draw on the board ...

- How long is the shortest path from 1 to 6? Why?
- Discuss

- How can we find this path, using the "spatial" properties of the network?
- Discuss

• ... adjust spatially the illustration on the board ...

٩

Let $y_i =$ length of the shortest path from node 1 to node *i*

"Stretch the arcs" between the nodes 1 and 6 ⇔ maximize the difference of the "potentials" y₆ and y₁:

$$(y_6 - y_1) \longrightarrow \max$$

The arcs are not elastic:

 A system of nine inequalities (not equations) and six unknowns, as well as an objective function to be maximized

Another mathematical model—based on flows

Send one unit of flow along the shortest path from node 1 to node 6

- Let $x_{ij} = \begin{cases} 1 & \text{if arc } (i,j) \text{ is in the shortest path from 1 to 6} \\ 0 & \text{otherwise} \end{cases}$
- Objective:

 $(4x_{12} + 2x_{13} + 3x_{32} + 3x_{24} + 2x_{34} + 4x_{25} + 4x_{45} + 4x_{46} + 1x_{56}) \rightarrow$ min

• Node balance (any flow that enters a node must also leave it)

$$\begin{array}{rcl} -x_{12} - x_{13} & = -1 \\ +x_{12} & +x_{32} - x_{24} & -x_{25} & = & 0 \\ & +x_{13} - x_{32} & -x_{34} & = & 0 \\ & & +x_{24} + x_{34} & -x_{45} - x_{46} & = & 0 \\ & & & +x_{25} + x_{45} & -x_{56} = & 0 \\ & & & +x_{46} + x_{56} = & 1 \\ & & x_{12} & , & x_{13} & , & x_{32} & , & x_{24} & , & x_{34} & , & x_{25} & , & x_{46} & , & x_{56} \ge & 0 \end{array}$$

The mathematical models are LP duals

The optimal solutions to the two models

•
$$y_1^* = 0$$
, $y_2^* = 4$, $y_3^* = 2$, $y_4^* = 4$, $y_5^* = 8$, $y_6^* = 8$

• \Leftrightarrow maximize the difference of the potentials:

$$(y_6^* - y_1^*) = 8$$

- Fulfilment of the constraints:
 - $\begin{array}{ll} y_2^* y_1^* = 4 = 4 & y_4^* y_2^* = 0 < 3 & y_5^* y_4^* = 4 = 4 \\ y_3^* y_1^* = 2 = 2 & y_4^* y_3^* = 2 = 2 & y_6^* y_4^* = 4 = 4 \\ y_2^* y_3^* = 2 < 3 & y_5^* y_2^* = 4 = 4 & y_6^* y_5^* = 0 < 1 \end{array}$

• The optimal solution to the flow model:

$$x_{13}^* = x_{34}^* = x_{46}^* = 1$$

 $x_{12}^* = x_{32}^* = x_{24}^* = x_{25}^* = x_{45}^* = x_{56}^* = 0$

[Illustrate the complementarity]

An LP formulation: shortest path from node $s \in N$ to node $t \in N$ in a directed graph $G = (N, A, \mathbf{d})$

- For each $(i,j) \in A$, let x_{ij} be the flow on arc (i,j)
- Flow balance in each node $k \in N$
- $x_{ij} = 1$ if arc (i, j) is in the shortest path; $x_{ij} = 0$ otherwise

Linear programming formulation (assume $d_{ij} \ge 0$):

$$\text{min } \sum_{\substack{(i,j)\in A \\ i:(i,k)\in A}} d_{ij}x_{ij}, \\ \text{s.t. } \sum_{i:(i,k)\in A} x_{ik} - \sum_{j:(k,j)\in A} x_{kj} = \begin{cases} -1, & k = s, \\ 1, & k = t, \\ 0, & k \in N \setminus \{s, t\}, \end{cases} \\ x_{ij} \geq 0, \quad (i,j) \in A \end{cases}$$

Linear programming dual:

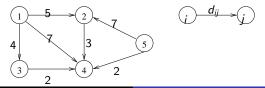
٢

$$\begin{array}{rll} \max & y_t - y_s, \\ \text{s.t.} & y_j - y_i & \leq & d_{ij}, & (i,j) \in A \\ & & y_k & \text{free}, & k \in N \end{array}$$

• Given: a network/graph of nodes N, (directed) arcs A, and arc lengths d_{ij} , $(i,j) \in A$

• Denoted $G = (N, A, \mathbf{d})$

Find the shortest path from a source node (s ∈ N) to a destination node (t ∈ N)

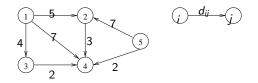

(Ch. 8.4)

Principle of optimality formulated by Bellman's equations (Ch. 8.4.1)

- In a graph with *no negative cycles*, optimal paths have optimal subpaths
- A shortest path from node *s* node to *t* that passes through node *k* contains a shortest path from node *s* node to *k*
- Let y_j denote the length of the shortest path from node s to j

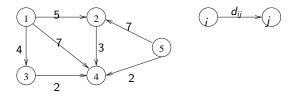
Bellman's equations:

•
$$y_j = \min_i \left\{ y_i + d_{ij} : (i,j) \in A \right\}$$
 for all $j \neq s$



Solution method I: Bellman's equations (special case of dynamic programming)

- If the graph is directed with no cycles: solve Bellman's equations in topological order
- Shortest path from node 1 to each of the other nodes (1,5,2,3,4):
 - *y*₁ := 0


•
$$y_5 := \min\{\infty\} = \infty$$

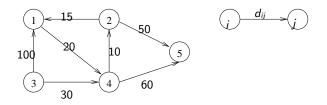
- $y_2 := \min\{\infty; y_1 + d_{12}; y_5 + d_{52}\} = \min\{\infty; 0 + 5; \infty\} = 5$
- $y_3 := \min\{\infty; y_1 + d_{13}\} = \min\{\infty; 0 + 4\} = 4$
- $y_4 := \min\{\infty; y_1 + d_{14}; y_2 + d_{24}; y_3 + d_{34}; y_5 + d_{54}\} = \min\{\infty; 0+7; 5+3; 4+2; \infty+2\} = 6$

Solution method II: Dijkstra's algorithm

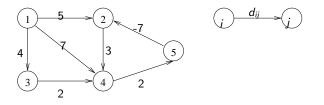
 The graph may contain cycles but all arc costs must be non-negative (i.e., d_{ij} ≥ 0)

• Solve the example on the board

Algorithms for the shortest path problem: Dijkstra (Ch.8.4.2)


- Find the shortest path between node *s* and node *i* when all arc lengths are non-negative (cycles may exist)
- N = set of all nodes; source node $s \in N$
- $d_{ij} =$ length of arc from i to j for all $i, j \in N$
- $d_{ij} := \infty$ if no direct arc from *i* to *j*

Dijkstra's shortest path algorithm

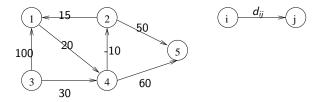

Step 0: $S := \{s\}, \ \overline{S} := N \setminus \{s\}$, and $y_i := d_{si}, \ i \in N$ Step 1: (a) If $\overline{S} = \emptyset$, stop. Otherwise, find node $j \in \overline{S}$ such that

- $y_j = \min_{i \in \overline{S}} \{y_i\}$. Set $S := S \cup \{j\}$ and $\overline{S} := \overline{S} \setminus \{j\}$
- (b) For all $k \in \overline{S}$ and $i \in S$: If $y_k > y_i + d_{ik}$ set $y_k := y_i + d_{ik}$ and pred(k) := i. Repeat from (a).
- The vector *pred* keeps track of the predecessors
- Dijkstra's algorithm actually finds shortest paths from the source to *all* others nodes (this is not formulated in the LP)

Find the shortest path from node 1 to all other nodes (Homework)

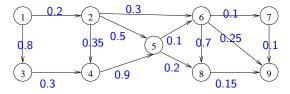
Negative lengths of arcs and negative cycles

- Negative length of arcs: extend Dijkstra's algorithm according to "move nodes back from S to \overline{S} " (Ford's algorithm)
- There may be a cycle of *negative* total length
- \Rightarrow "Length" of the shortest path $\rightarrow -\infty$
- \Rightarrow Ford's algorithm *either* finds a shortest path *or* detects a cycle with a negative total length


Algorithms for the shortest path problem: Floyd–Warshall (Ch. 8.4.2)

- Computes shortest paths between each pair of nodes
- Negative lengths are allowed; negative cycles will be detected
- Idea: Three nodes i, k, j and lengths d_{ik}, d_{kj} , and d_{ij}
- $i \rightarrow k \rightarrow j$ is a short-cut if $d_{ik} + d_{kj} < d_{ij}$
- In each iteration 1...k, check whether d_{ij} can be improved by using the short-cut via k
- Administration of the algorithm: Maintain two matrices per iteration: D[k] for the lengths and pred[k] to keep track of the predecessor of each node

Floyd-Warshall's algorithm


Step 0: Initialize D[0] and pred[0]

Find the shortest path from node 3 to all other nodes

Example: Most reliable route

- Mr Q drives to work daily
- Every link in the road network is patrolled by the police
- A probability p_{ij} ∈ [0,1] of not being stopped by the police is assigned to link (i, j)
- Mr Q wants to find the "shortest" (safest?) path in the sense that the probability of being stopped is as low as possible
- maximize *Prob*(not being stopped)

Ex. 1 → 4: max{p₁₂p₂₄; p₁₃p₃₄} = max{0.2 · 0.35; 0.8 · 0.3}
Note: This version *cannot* be formulated as a linear program

Most reliable path (failure probability $p_{ij} \in [0, 1]$ for arc (i, j)):

•
$$y_s = 1$$

• $y_j = \max \{ y_i \cdot p_{ij} : \operatorname{arc} (i, j) \text{ exists } \} \text{ for all } j \neq s$

Highest capacity path (capacity $K_{ij} \ge 0$ on arc (i, j)):

•
$$y_s = \infty$$

•
$$y_j = \max_i \{ \min\{y_i; K_{ij}\} : \operatorname{arc}(i, j) \text{ exists } \}, j \neq s$$