
MVE165/MMG631

Linear and integer optimization with applications
Lecture 10

Shortest paths; dynamic programming;
linear programming formulations of network flows

Ann-Brith Strömberg

2017–04–28

Lecture 10 Linear and integer optimization with applications 1/22



Flows in networks, in particular shortest paths

A path from node 5 to

node 3

3

1

5

4

2

A flow network

Supply nodes: S, G, L

Demand nodes: H, T

Storage (intermediate): M, N

Limited capacities on links

Minimize costs for transport and
storage

S

L

G

H

T

N

M

Lecture 10 Linear and integer optimization with applications 2/22



Network models—examples (Ch. 8)

Many different problems can be formulated as graph or network
flow models

Find the total capacity of a given water pipeline network

Find a time schedule (starting and completion times) for the
activities in a project

How much goods should be transported from each supplier to
each point of demand in a transportation system, and which
links should be used to what extent

Lecture 10 Linear and integer optimization with applications 3/22



A useful application

Question:

In terms of networks

What question
do we ask?

Discuss with
your neigbour!

Suggestions?

Answer:

Lecture 10 Linear and integer optimization with applications 4/22



The shortest path problem: a useful application

A number of “short” (or fast) paths that

depart at the earliest “now”, and

arrive at the latest “around 12:40”

Lecture 10 Linear and integer optimization with applications 5/22



Shortest path problem—properties & solution

What properties of the problem can we utilize to construct an
efficient solution method for the shortest path problem?

3

1

5

4

2

Discuss

... draw on the board ...

Lecture 10 Linear and integer optimization with applications 6/22



Solving the problem ...

How long is the shortest path from 1 to 6? Why?

Discuss

How can we find this path, using the “spatial” properties of the
network?

Discuss

... adjust spatially the illustration on the board ...

Lecture 10 Linear and integer optimization with applications 7/22



A mathematical model

Let yi = length of the shortest path from node 1 to node i

“Stretch the arcs” between the nodes 1 and 6 ⇔ maximize the
difference of the “potentials” y6 and y1:

(y6 − y1) −→ max

The arcs are not elastic:

y2 − y1 ≤ 4

y3 − y1 ≤ 2

y2 − y3 ≤ 3

y4 − y2 ≤ 3

y4 − y3 ≤ 2

y5 − y2 ≤ 4

y5 − y4 ≤ 4

y6 − y4 ≤ 4

y6 − y5 ≤ 1

A system of nine inequalities (not equations) and six
unknowns, as well as an objective function to be maximized

Lecture 10 Linear and integer optimization with applications 8/22



Another mathematical model—based on flows

Send one unit of flow along the shortest path from node 1 to node 6

Let xij =

{

1 if arc (i , j) is in the shortest path from 1 to 6
0 otherwise

Objective:
(4x12+2x13+3x32+3x24+2x34+4x25+4x45+4x46+1x56) →
min

Node balance (any flow that enters a node must also leave it)

−x12 −x13 =−1
+x12 +x32 −x24 −x25 = 0

+x13 −x32 −x34 = 0
+x24 +x34 −x45 −x46 = 0

+x25 +x45 −x56 = 0
+x46 +x56 = 1

x12 , x13 , x32 , x24 , x34 , x25 , x45 , x46 , x56 ≥ 0

Lecture 10 Linear and integer optimization with applications 9/22



The mathematical models are LP duals

The optimal solutions to the two models

y∗
1
= 0, y∗

2
= 4, y∗

3
= 2, y∗

4
= 4, y∗

5
= 8, y∗

6
= 8

⇔ maximize the difference of the potentials:

(y∗6 − y∗1 ) = 8

Fulfilment of the constraints:
y∗

2 − y∗

1 = 4 = 4

y∗

3
− y∗

1
= 2 = 2

y∗

2 − y∗

3 = 2 < 3

y∗

4 − y∗

2 = 0 < 3

y∗

4
− y∗

3
= 2 = 2

y∗

5 − y∗

2 = 4 = 4

y∗

5 − y∗

4 = 4 = 4

y∗

6
− y∗

4
= 4 = 4

y∗

6 − y∗

5 = 0 < 1

The optimal solution to the flow model:

x∗13 = x∗34 = x∗46 = 1

x∗12 = x∗32 = x∗24 = x∗25 = x∗45 = x∗56 = 0

[Illustrate the complementarity]
Lecture 10 Linear and integer optimization with applications 10/22



An LP formulation: shortest path from node s ∈ N to node

t ∈ N in a directed graph G = (N ,A,d)

For each (i , j) ∈ A, let xij be the flow on arc (i , j)
Flow balance in each node k ∈ N

xij = 1 if arc (i , j) is in the shortest path; xij = 0 otherwise

Linear programming formulation (assume dij ≥ 0):

min
∑

(i ,j)∈A

dijxij ,

s.t.
∑

i :(i ,k)∈A

xik −
∑

j:(k,j)∈A

xkj =







−1, k = s,

1, k = t,

0, k ∈ N \ {s, t},
xij ≥ 0, (i , j) ∈ A

Linear programming dual:
max yt − ys ,

s.t. yj − yi ≤ dij , (i , j) ∈ A

yk free, k ∈ N

Lecture 10 Linear and integer optimization with applications 11/22



The shortest path problem (Ch. 8.4)

Given: a network/graph of nodes N, (directed) arcs A, and arc
lengths dij , (i , j) ∈ A

Denoted G = (N,A,d)

Find the shortest path from a source node (s ∈ N) to a
destination node (t ∈ N)

Lecture 10 Linear and integer optimization with applications 12/22



Principle of optimality formulated by Bellman’s equations

(Ch. 8.4.1)

In a graph with no negative cycles, optimal paths have optimal
subpaths
A shortest path from node s node to t that passes through
node k contains a shortest path from node s node to k

Let yj denote the length of the shortest path from node s to j

Bellman’s equations:

ys = 0

yj = min
i

{

yi + dij : (i , j) ∈ A
}

for all j 6= s

5

3

1

4

25

7

4
7

3

2
2

i j
dij

Lecture 10 Linear and integer optimization with applications 13/22



Solution method I: Bellman’s equations (special case of
dynamic programming)

If the graph is directed with no cycles: solve Bellman’s
equations in topological order
Shortest path from node 1 to each of the other nodes
(1,5,2,3,4):

y1 := 0
y5 := min{∞} = ∞
y2 := min{∞; y1 + d12; y5 + d52} = min{∞; 0 + 5;∞} = 5
y3 := min{∞; y1 + d13} = min{∞; 0 + 4} = 4
y4 := min{∞; y1 + d14; y2 + d24; y3 + d34; y5 + d54} =
min{∞; 0 + 7; 5 + 3; 4 + 2;∞+ 2} = 6

5

3

1

4

25
7

4
7 3

2
2

i j
dij

y∗
1
= 0, y∗

2
= 5, y∗

3
= 4, y∗

4
= 6, y∗

5
= ∞Lecture 10 Linear and integer optimization with applications 14/22



Solution method II: Dijkstra’s algorithm

The graph may contain cycles but all arc costs must be
non-negative (i.e., dij ≥ 0)

5

3

1

4

25

7

4
7

3

2
2

i j
dij

Solve the example on the board

Lecture 10 Linear and integer optimization with applications 15/22



Algorithms for the shortest path problem: Dijkstra (Ch.8.4.2)

Find the shortest path between node s and node i when all arc
lengths are non-negative (cycles may exist)
N = set of all nodes; source node s ∈ N

dij = length of arc from i to j for all i , j ∈ N

dij := ∞ if no direct arc from i to j

Dijkstra’s shortest path algorithm

Step 0: S := {s}, S̄ := N \ {s}, and yi := dsi , i ∈ N

Step 1:

(a) If S̄ = ∅, stop. Otherwise, find node j ∈ S̄ such that
yj = mini∈S̄{yi}. Set S := S ∪ {j} and S̄ := S̄ \ {j}

(b) For all k ∈ S̄ and i ∈ S : If yk > yi + dik set yk := yi + dik and
pred(k) := i . Repeat from (a).

The vector pred keeps track of the predecessors

Dijkstra’s algorithm actually finds shortest paths from the
source to all others nodes (this is not formulated in the LP)

Lecture 10 Linear and integer optimization with applications 16/22



Example: Dijkstra’s algorithm

Find the shortest path from node 1 to all other nodes (Homework)

5

3

1

4

215

50

100
20

10

30
60

i j
dij

Lecture 10 Linear and integer optimization with applications 17/22



Negative lengths of arcs and negative cycles

5

3

1

4

25

-7

4
7

3

2
2

i j
dij

Negative length of arcs: extend Dijkstra’s algorithm according
to “move nodes back from S to S̄” (Ford’s algorithm)

There may be a cycle of negative total length

⇒ “Length” of the shortest path → −∞

⇒ Ford’s algorithm either finds a shortest path or detects a cycle
with a negative total length

Lecture 10 Linear and integer optimization with applications 18/22



Algorithms for the shortest path problem: Floyd–Warshall

(Ch. 8.4.2)

Computes shortest paths between each pair of nodes

Negative lengths are allowed; negative cycles will be detected

Idea: Three nodes i , k , j and lengths dik , dkj , and dij

i → k → j is a short-cut if dik + dkj < dij

In each iteration 1 . . . k , check whether dij can be improved by
using the short-cut via k

Administration of the algorithm: Maintain two matrices per
iteration: D[k] for the lengths and pred [k] to keep track of the
predecessor of each node

Lecture 10 Linear and integer optimization with applications 19/22



Floyd–Warshall’s algorithm

Floyd–Warshall’s algorithm

Step 0: Initialize D[0] and pred [0]

Step k: D[k ] := D[k − 1], pred [k ] := pred [k − 1]
For each element dij in D[k ]:
If dik + dkj < dij , set dij := dik + dkj and predij [k ] := k

Set k := k + 1
If k > n stop, else repeat Step k

Find the shortest path from node 3 to all other nodes

5

3

1

4

2 i j15

50

100
20

-10

30
60

dij

Lecture 10 Linear and integer optimization with applications 20/22



Example: Most reliable route

Mr Q drives to work daily

Every link in the road network is patrolled by the police

A probability pij ∈ [0, 1] of not being stopped by the police is
assigned to link (i , j)

Mr Q wants to find the “shortest” (safest?) path in the sense
that the probability of being stopped is as low as possible

maximize Prob(not being stopped)

8

6

9

7

3

1

5

4

20.2 0.3
0.1

0.8 0.35
0.5

0.1 0.7
0.25

0.1

0.3
0.9

0.2

0.15

Ex. 1 → 4: max{p12p24; p13p34} = max{0.2 · 0.35; 0.8 · 0.3}

Note: This version cannot be formulated as a linear program

Lecture 10 Linear and integer optimization with applications 21/22



Alternative objectives ⇒ Variants of Bellman’s equations

Most reliable path (failure probability pij ∈ [0, 1] for arc (i , j)):

ys = 1

yj = max
i

{

yi · pij : arc (i , j) exists
}

for all j 6= s

Highest capacity path (capacity Kij ≥ 0 on arc (i , j)):

ys = ∞

yj = max
i

{

min{yi ;Kij} : arc (i , j) exists
}

, j 6= s

Lecture 10 Linear and integer optimization with applications 22/22


