MVE165/MMG631 Linear and Integer Optimization with Applications Lecture 3 Extreme points of convex polyhedra; reformulations; basic feasible solutions; the simplex method

Ann-Brith Strömberg

2017-03-24

Course evaluation

- The first meeting was held on Friday, March 24 at 9.30.
- The second meeting will be held during week 17 (April, 24–28)
- Notes will be published in the course's PingPong event
- Any voluntary representative from GU is also welcome! Anyone?

Contact any student representative to present your opinion:

- Arvid Bjurklint (TKTEM)
- Frida Eriksson (TKTEM)
- Oskar Holmstedt (TKTEM)
- Stefanus Ivarsson Bergenhem (MPSYS)

A linear optimization model – a linear program	
minimize $z = \sum_{i=1}^{n} c_j x_j$	Ir
subject to $\sum_{i=1}^{n} a_{ij} x_j \leq b_i, i = 1, \dots, m$	
$x_j \ge 0, j = 1, \dots, n$	C

In	vector	notation
	min	$z = \mathbf{c}^{\mathrm{T}} \mathbf{x}$
	s.t.	$\mathbf{A}\mathbf{x} \leq \mathbf{b}$
		$\mathbf{x} \geq 0^n$

$$\mathbf{c}, \mathbf{x} \in \mathbb{R}^n$$
, $\mathbf{b} \in \mathbb{R}^m$,
 $\mathbf{A} \in \mathbb{R}^{m imes n}$

 c_j , a_{ij} , b_i : constant parameters

The feasible region is a polyhedron,
$$X \subset \mathbb{R}^n_+$$

$$X := \left\{ \mathbf{x} \ge \mathbf{0}^n \ \left| \ \sum_{j=1}^n a_{ij} x_j \le b_i, i = 1, \dots, m \right. \right\} = \left\{ \mathbf{x} \ge \mathbf{0}^n \ \left| \ \mathbf{A} \mathbf{x} \le \mathbf{b} \right. \right\}$$

Linear programs, convex polyhedra and extreme points (Ch. 4.1)

Definition (Convex combination)

A convex combination of the points \mathbf{x}^{p} , p = 1, ..., P, is a point \mathbf{x} that can be expressed as

$$\mathbf{x} = \sum_{p=1}^{P} \lambda_p \mathbf{x}^p; \qquad \sum_{p=1}^{P} \lambda_p = 1; \qquad \lambda_p \ge 0, \quad p = 1, \dots, P$$

[DRAW ON THE BOARD]

Linear programs, convex polyhedra and extreme points (Ch. 4.1)

Intersection of linear constraints form a convex set

The feasible region of a linear program is a *convex set*, since for any two feasible points \mathbf{x}^1 and \mathbf{x}^2 and any $\lambda \in [0, 1]$ it holds that

$$\sum_{j=1}^{n} a_{ij} \left(\lambda x_j^1 + (1-\lambda) x_j^2 \right) = \lambda \sum_{j=1}^{n} a_{ij} x_j^1 + (1-\lambda) \sum_{j=1}^{n} a_{ij} x_j^2$$

$$\leq \lambda b_i + (1-\lambda) b_i$$

$$= b_i, \qquad i = 1, \dots, m$$

and

$$\lambda x_j^1 + (1-\lambda)x_j^2 \geq 0, \qquad j=1,\ldots,n$$

[DRAW ON THE BOARD]

Linear programs, convex polyhedra and extreme points (Ch. 4.1)

Definition (Extreme point (Def. 4.2))

The point \mathbf{x}^k is an *extreme point* of the polyhedron X if $\mathbf{x}^k \in X$ and it is *not* possible to express \mathbf{x}^k as a *strict convex combination* of two distinct points in X.

I.e: Given
$$\mathbf{x}^1 \in X$$
, $\mathbf{x}^2 \in X$, and $0 < \lambda < 1$, it holds that
 $\mathbf{x}^k = \lambda \mathbf{x}^1 + (1 - \lambda)\mathbf{x}^2$ only if $\mathbf{x}^k = \mathbf{x}^1 = \mathbf{x}^2$ hold.
[DRAW ON THE BOARD]

Theorem (Optimal solution in an extreme point (Th. 4.2))

Assume that the feasible region $X = \{ \mathbf{x} \ge \mathbf{0}^n \mid \mathbf{A}\mathbf{x} \le \mathbf{b} \}$ is non-empty and bounded. Then, the minimum value of the objective $\mathbf{c}^T \mathbf{x}$ is attained at (at least) one extreme point \mathbf{x}^k of X.

A general linear program – notation

Definition (Notation of linear programs)

minimize or maximize $c_1x_1 + \ldots + c_nx_n$

subject to
$$a_{i1}x_1 + \ldots + a_{in}x_n \begin{cases} \leq \\ = \\ \geq \end{cases} b_i, \quad i = 1, \ldots, m$$

$$x_j \begin{cases} \leq 0 \\ \text{unrestricted in sign} \\ \geq 0 \end{cases}, \quad j = 1, \ldots, n$$

The blue notation corresponds to the standard form

The standard form and the simplex method for linear programs (Ch. 4.2)

- Every linear program can be reformulated such that:
 - all constraints are expressed as *equalities* with *non-negative right hand sides*
 - all variables involved are restricted to be *non-negative*
- Referred to as the *standard form*
- These requirements streamline the calculations of the *simplex method*
- Software solvers (e.g., Cplex, GLPK, Clp, Gurobi, SCIP) handle also inequality constraints and unrestricted variables – the reformulations are made automatically

• Slack variables:

$$\left[\begin{array}{ccc}\sum_{j=1}^n a_{ij}x_j &\leq b_i, \ \forall i\\ x_j &\geq 0, \ \forall j\end{array}\right] \Longleftrightarrow \left[\begin{array}{ccc}\sum_{j=1}^n a_{ij}x_j &+s_i &=b_i, \ \forall i\\ x_j &\geq 0, \ \forall j\\ s_i &\geq 0, \ \forall i\end{array}\right]$$

• The lego example:

$$\begin{bmatrix} 2x_1 & +x_2 \le & 6\\ 2x_1 & +2x_2 \le & 8\\ & x_1, x_2 \ge & 0 \end{bmatrix} \iff \begin{bmatrix} 2x_1 & +x_2 & +s_1 & = & 6\\ 2x_1 & +2x_2 & +s_2 & = & 8\\ & & x_1, x_2, s_1, s_2 \ge & 0 \end{bmatrix}$$

 s₁ and s₂ are called *slack variables*—they "fill out" the (positive) distances between the left and right hand sides

• Surplus variables:

$$\left[\begin{array}{ccc}\sum_{j=1}^n a_{ij}x_j &\geq b_i, \ \forall i\\ x_j &\geq 0, \ \forall j\end{array}\right] \Longleftrightarrow \left[\begin{array}{ccc}\sum_{j=1}^n a_{ij}x_j &-s_i &=b_i, \ \forall i\\ x_j &\geq 0, \ \forall j\\ s_i &\geq 0, \ \forall i\end{array}\right]$$

• Surplus variable *s*₃ (another instance):

$$\left[\begin{array}{cccc} x_1 & + & x_2 & \ge & 800 \\ & x_1, x_2 & \ge & 0 \end{array}\right] \iff \left[\begin{array}{cccc} x_1 & + & x_2 - & \mathbf{s_3} & = & 800 \\ & & x_1, x_2, \mathbf{s_3} & \ge & 0 \end{array}\right]$$

• Suppose that b < 0:

$$\left[\begin{array}{c}\sum_{j=1}^{n}a_{j}x_{j}\leq b\\x_{j}\geq 0,\forall j\end{array}\right] \Longleftrightarrow \left[\begin{array}{c}\sum_{j=1}^{n}(-a_{j})x_{j}\geq -b\\x_{j}\geq 0,\forall j\end{array}\right] \Longleftrightarrow \left[\begin{array}{c}-\sum_{j=1}^{n}a_{j}x_{j}&-s&=-b\\x_{j}&\geq 0,\forall j\\s&\geq 0\end{array}\right]$$

• Non-negative right hand side:

$$\begin{bmatrix} x_1 - x_2 \leq -23 \\ x_1, x_2 \geq 0 \end{bmatrix} \Longleftrightarrow \begin{bmatrix} -x_1 + x_2 \geq 23 \\ x_1, x_2 \geq 0 \end{bmatrix} \Longleftrightarrow \begin{bmatrix} -x_1 + x_2 - s_4 = 23 \\ x_1, x_2, s_4 \geq 0 \end{bmatrix}$$

• Suppose that some of the variables are unconstrained (here: k < n). Replace x_j with $x_j^1 - x_j^2$ for the corresponding indices:

$$\begin{bmatrix} \sum_{j=1}^{n} a_j x_j \le b \\ x_j \ge 0, j = 1, \dots, k \end{bmatrix} \iff \begin{bmatrix} \sum_{j=1}^{k} a_j x_j + \sum_{j=k+1}^{n} a_j (x_j^1 - x_j^2) + s &= b \\ x_j \ge 0, \ j = 1, \dots, k, \\ x_j^1 \ge 0, x_j^2 \ge 0, \ j = k+1, \dots, n \\ s \ge 0 \end{bmatrix}$$

• Sign-restricted (non-negative) variables:

$$\begin{bmatrix} x_1 + x_2 \le 10 \\ x_1 \ge 0 \end{bmatrix} \Longleftrightarrow \begin{bmatrix} x_1 + x_2^1 - x_2^2 \le 10 \\ x_1, x_2^1, x_2^2 \ge 0 \end{bmatrix} \Longleftrightarrow \begin{bmatrix} x_1 + x_2^1 - x_2^2 + s_5 = 10 \\ x_1, x_2^1, x_2^2, s_5 \ge 0 \end{bmatrix}$$

Basic feasible solutions (Ch. 4.3)

- Consider *m* equations with *n* variables, where $m \le n$
- Set n m variables to zero and solve (if possible) the remaining $(m \times m)$ system of equations
- If the solution is *unique*, it is called a *basic* solution

Definition (Def. 4.3)

A *basic* solution to the $m \times n$ system of equations $\mathbf{A}\mathbf{x} = \mathbf{b}$ is obtained if n - m of the variables are set to 0 and the remaining variables get their unique values from the solution to the remaining $m \times m$ system of equations.

The variables that are set to 0 are called *nonbasic variables* and the remaining *m* variables are called *basic variables*.

Basic feasible solutions (Ch. 4.3)

- A basic solution **x** corresponds to the *intersection* of *m* hyperplanes in \mathbb{R}^m
 - It is feasible if $\mathbf{x} \geq \mathbf{0}$
 - It is infeasible if $x \not\geq 0$
- Each extreme point of the feasible set is an intersection of m hyperplanes such that all variable values are ≥ 0
- Basic feasible solution \iff extreme point of the feasible set

$$\begin{array}{ll} a_{11}x_1 + \ldots + a_{1n}x_n = b_1 & x_1 \ge 0 \\ a_{21}x_1 + \ldots + a_{2n}x_n = b_2 & x_2 \ge 0 \\ & \ddots & & \ddots \\ a_{m1}x_1 + \ldots + a_{mn}x_n = b_m & x_n \ge 0 \end{array}$$

Basic feasible solutions

Assume that
$$m < n$$
 and that $b_i \ge 0$, $i = 1, ..., m$, and let
 $\mathbf{c} = \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix}$, $\mathbf{A} = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix}$, $\mathbf{b} = \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix}$, $\mathbf{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$

Consider the linear program to

 $\begin{array}{ll} \underset{\mathbf{x}}{\textit{minimize}} & z = \mathbf{c}^{\mathrm{T}} \mathbf{x} \\ \textit{subject to} & \mathbf{A} \mathbf{x} = \mathbf{b} \\ & \mathbf{x} \geq \mathbf{0} \end{array}$

Partition x into m basic variables x_B and n - m non-basic variables x_N, such that x = (x_B, x_N).

• Analogously, let $\mathbf{c} = (\mathbf{c}_B, \mathbf{c}_N)$ and $\mathbf{A} = (\mathbf{A}_B, \mathbf{A}_N) \equiv (\mathbf{B}, \mathbf{N})$

• The matrix $\mathbf{B} \in \mathbb{R}^{m \times m}$ with inverse \mathbf{B}^{-1} (if it exists)

Rewrite the linear program as

$$\begin{array}{lll} \begin{array}{lll} \textit{minimize} & z = \mathbf{c}_B^{\mathrm{T}} \mathbf{x}_B + \mathbf{c}_N^{\mathrm{T}} \mathbf{x}_N & (1a) \\ \textit{subject to} & \mathbf{B} \mathbf{x}_B + \mathbf{N} \mathbf{x}_N &= \mathbf{b} & (1b) \\ & \mathbf{x}_B \geq \mathbf{0}^m, \ \mathbf{x}_N &\geq \mathbf{0}^{n-m} & (1c) \end{array}$$

• Multiply the equation (1b) with ${\bf B}^{-1}$ from the left:

$$\mathbf{B}^{-1}\mathbf{B}\mathbf{x}_{B} + \mathbf{B}^{-1}\mathbf{N}\mathbf{x}_{N} = \mathbf{x}_{B} + \mathbf{B}^{-1}\mathbf{N}\mathbf{x}_{N} = \mathbf{B}^{-1}\mathbf{b}$$

$$\Rightarrow \mathbf{x}_{B} = \mathbf{B}^{-1}\mathbf{b} - \mathbf{B}^{-1}\mathbf{N}\mathbf{x}_{N} = \mathbf{B}^{-1}(\mathbf{b} - \mathbf{N}\mathbf{x}_{N}) \qquad (2)$$

• Replace \mathbf{x}_{B} in (1) by the expression (2):

$$\mathbf{c}_{B}^{\mathrm{T}}\mathbf{x}_{B} + \mathbf{c}_{N}^{\mathrm{T}}\mathbf{x}_{N} = \mathbf{c}_{B}^{\mathrm{T}}\mathbf{B}^{-1}(\mathbf{b} - \mathbf{N}\mathbf{x}_{N}) + \mathbf{c}_{N}^{\mathrm{T}}\mathbf{x}_{N} = \mathbf{c}_{B}^{\mathrm{T}}\mathbf{B}^{-1}\mathbf{b} + (\mathbf{c}_{N}^{\mathrm{T}} - \mathbf{c}_{B}^{\mathrm{T}}\mathbf{B}^{-1}\mathbf{N})\mathbf{x}_{N}$$

The rewritten program

$$\begin{array}{ll} \mbox{minimize} & z = \mathbf{c}_B^{\mathrm{T}} \mathbf{B}^{-1} \mathbf{b} + (\mathbf{c}_N^{\mathrm{T}} - \mathbf{c}_B^{\mathrm{T}} \mathbf{B}^{-1} \mathbf{N}) \mathbf{x}_N & (3a) \\ \mbox{subject to} & \mathbf{B}^{-1} \mathbf{b} - \mathbf{B}^{-1} \mathbf{N} \mathbf{x}_N & \geq \mathbf{0}^m & (3b) \\ & \mathbf{x}_N & \geq \mathbf{0}^{n-m} & (3c) \end{array}$$

At the basic solution defined by $B \subset \{1, \ldots, n\}$:

- Each non-basic variable takes the value 0, i.e., $\mathbf{x}_N = \mathbf{0}$
- The basic variables take the values $\mathbf{x}_B = \mathbf{B}^{-1}\mathbf{b} - \mathbf{B}^{-1}\mathbf{N}\mathbf{x}_N = \mathbf{B}^{-1}\mathbf{b}$
- The value of the objective function is $z = \mathbf{c}_B^{\mathrm{T}} \mathbf{B}^{-1} \mathbf{b}$
- The basic solution is feasible if $\mathbf{B}^{-1}\mathbf{b} \ge \mathbf{0}^m$

The simplex method: Optimality and feasibility and change of basis (Ch. 4.4)

Optimality condition (for minimization)

The basis *B* is optimal if $\mathbf{c}_N^{\mathrm{T}} - \mathbf{c}_B^{\mathrm{T}} \mathbf{B}^{-1} \mathbf{N} \ge \mathbf{0}^{n-m}$ (marginal values = reduced costs ≥ 0) If not, choose as entering variable $j \in N$ the one with the

lowest (negative) value of the reduced cost $c_j - \mathbf{c}_B^{\mathrm{T}} \mathbf{B}^{-1} \mathbf{A}_j$

Feasibility condition

For all $i \in B$ it holds that $x_i = (\mathbf{B}^{-1}\mathbf{b})_i - (\mathbf{B}^{-1}\mathbf{A}_j)_i x_j$

Choose the leaving variable $i^* \in B$ according to

$$i^* = \arg\min_{i\in B} \left\{ rac{(\mathbf{B}^{-1}\mathbf{b})_i}{(\mathbf{B}^{-1}\mathbf{A}_j)_i} \middle| (\mathbf{B}^{-1}\mathbf{A}_j)_i > 0
ight\}$$

Simplex search for linear optimization (Ch. 4.6)

Overview of the simplex algorithm for linear optimization (minimization)

- Initialization: Choose any *feasible basis*, construct the corresponding *basic solution* x⁰, let t = 0
- Step direction: Select a variable to *enter the basis* using the *optimality condition* (negative marginal value).
 Stop if no entering variable exists
- Step length: Use the *feasibility condition* (smallest non-negative quotient) to select a variable to *leave the basis*
- New iterate: Compute the new basic solution x^{t+1} by performing matrix operations
- Solution Let t := t + 1 and repeat from step 2

Basic feasible solutions, example

• Constraints:

• Add slack variables:

Basic and non-basic variables and solutions

basic	basic solution		tion	non-basic	point	feasible?
variables				variables (0,0)		
s_1, s_2, s_3	23	6	85	x_1, x_2	А	yes
s_1, s_2, x_1	$-5\frac{1}{3}$	$4\frac{1}{9}$	$28\frac{1}{3}$	<i>s</i> ₃ , <i>x</i> ₂	Н	no
s_1, s_2, x_2	23	$-4\frac{5}{8}$	$10\frac{5}{8}$	<i>x</i> ₁ , <i>s</i> ₃	С	no
<i>s</i> ₁ , <i>x</i> ₁ , <i>s</i> ₃	-67	90	-185	s_2, x_2	- I	no
<i>s</i> ₁ , <i>x</i> ₂ , <i>s</i> ₃	23	6	37	s_2, x_1	В	yes
x_1, s_2, s_3	23	$4\frac{7}{15}$	16	s_1, x_2	G	yes
x_2, s_2, s_3	-	-	-	s_1, x_1	-	-
x_1, x_2, s_1	15	5	8	<i>s</i> ₂ , <i>s</i> ₃	D	yes
x_1, x_2, s_2	23	2	$2\frac{7}{15}$	<i>s</i> ₁ , <i>s</i> ₃	F	yes
x_1, x_2, s_3	23	$4\frac{7}{15}$	$-19\frac{11}{15}$	s_1, s_2	E	no
	x2 10 5 5 1 4	(3)				 I
	1	5	10	15 20	∠5	

Basic **feasible** solutions correspond to solutions to the system of equations that **fulfil non-negativity**

<i>x</i> ₁	+	<i>s</i> ₁	= 23
0.067 <i>x</i> ₁	$+x_{2}$	$+s_2$	= 6
3 <i>x</i> ₁	$+8x_{2}$	$+s_{3}$	₃ = 85

~~

Basic **infeasible** solutions corresp. to solutions to the system of equations with one or more variables < 0

<i>x</i> ₁	+	<i>s</i> 1	= 23
0.067 <i>x</i> ₁	$+x_{2}$	$+s_2$	= 6
3 <i>x</i> ₁	$+8x_{2}$	+s	3 = 85

Basic feasible solutions and the simplex method

Express the *m* basic variables in terms of the *n* – *m* non-basic variables

Example: Start at $x_1 = x_2$	$\kappa_2=0\Rightarrow s_1$,	<i>s</i> ₂ , <i>s</i> ₃ are	basic
x_1 $\frac{1}{15}x_1$ $3x_1$	+s ₁ +x ₂ +8x ₂	+ <i>s</i> ₂ + <i>s</i> ₃	= 23 = 6 = 85

Express s_1 , s_2 , and s_3 in terms of x_1 and x_2 (non-basic):

• We wish to maximize the value of the objective function $2x_1 + 3x_2$

Express the objective in terms of the *non-basic* variables: (maximize) $z = 2x_1 + 3x_2 \iff z - 2x_1 - 3x_2 = 0$ Lecture 3 Linear and Integer Optimization with Applications 24/31

Basic feasible solutions and the simplex method

- Marginal values for increasing the non-basic variables x₁ and x₂ from zero: 2 and 3, resp.
- $\Rightarrow Choose x_2 let x_2 enter the basis DRAW GRAPH!!$
 - One basic variable $(s_1, s_2, \text{ or } s_3)$ must *leave the basis*. Which?

The value of x_2 increases until a basic variable reaches the value 0:

$$\begin{array}{c} (2): s_2 = 6 - x_2 \ge 0 & \Rightarrow x_2 \le 6 \\ (3): s_3 = 85 - 8x_2 \ge 0 & \Rightarrow x_2 \le 10\frac{5}{8} \end{array} \right\} \Rightarrow \begin{array}{c} s_2 = 0 \text{ when } x_2 = 6 \\ \text{ (and } s_3 = 37) \end{array}$$

• s₂ will leave the basis

Change basis through row operations

Eliminate s_2 from the basis let x_2 enter the basis—use row operations:									
- <i>z</i>	$+2x_{1}$	$+3x_{2}$				=	0	(0)	
	<i>x</i> ₁		$+s_1$			=	23	(1)	
	$\frac{1}{15}x_1$	$+x_{2}$		$+s_{2}$		=	6	(2)	
	$3x_1$	$+8x_{2}$			$+s_3$	=	85	(3)	
-z	$+\frac{9}{5}x_1$			-3 <i>s</i> ₂		=	-18	$(0) - 3 \cdot (2)$	
	<i>x</i> ₁		+ <i>s</i> ₁			=	23	$(1) - 0 \cdot (2)$	
	$\frac{1}{15}x_1$	$+x_{2}$		$+s_{2}$		=	6	(2)	
	$\frac{37}{15}x_1$			-8 <i>s</i> ₂	+ <i>s</i> ₃	=	37	(3)-8·(2)	

- Corresponding basic solution: $s_1 = 23$, $x_2 = 6$, $s_3 = 37$.
- Nonbasic variables: $x_1 = s_2 = 0$
- The marginal value of x_1 is $\frac{9}{5} > 0$. Let x_1 enter the basis
- Which one should leave? s_1 , x_2 , or s_3 ?

Change basis ... x_1 enters the basis (marginal value > 0)

The value of x_1 increases until a basic variable reaches the value 0:

$$\begin{array}{l} (1): s_{1} = 23 - x_{1} \ge 0 & \Rightarrow x_{1} \le 23 \\ (2): x_{2} = 6 - \frac{1}{15}x_{1} \ge 0 & \Rightarrow x_{1} \le 90 \\ (3): s_{3} = 37 - \frac{37}{15}x_{1} \ge 0 & \Rightarrow x_{1} \le 15 \end{array} \right\} \Rightarrow \begin{array}{l} s_{3} = 0 \text{ when} \\ x_{1} = 15 \end{array}$$

 x_1 enters and s_3 leaves the basis: perform row operations:

- <i>z</i>				+2.84 <i>s</i> ₂	-0.73 <i>s</i> 3	=	-45	$(0)-(3)\cdot\frac{15}{37}\cdot\frac{9}{5}$
			s_1	$+3.24s_{2}$	-0.41 <i>s</i> ₃	=	8	$(1)-(3)\cdot\frac{15}{37}$
		<i>x</i> ₂		$+1.22s_{2}$	-0.03 <i>s</i> ₃	=	5	$(2)-(3)\cdot \frac{15}{37}\cdot \frac{1}{15}$
,	×1			-3.24 <i>s</i> ₂	$+0.41s_{3}$	=	15	$(3) \cdot \frac{15}{37}$

27/31

Change basis ... s_2 enters the basis (marginal value > 0)

-z			+2.84 <i>s</i> ₂	-0.73 <i>s</i> ₃	=	-45	(0)
		s_1	$+3.24s_{2}$	-0.41 <i>s</i> ₃	=	8	(1)
	<i>x</i> ₂		$+1.22s_{2}$	-0.03 <i>s</i> ₃	=	5	(2)
<i>x</i> ₁			-3.24 <i>s</i> ₂	$+0.41s_{3}$	=	15	(3)

The value of s_2 increases until some basic variable value = 0:

$(1): s_1 = 8 - 3.24 s_2 \ge 0$	$\Rightarrow s_2 \leq 2.47$		c = 0 when
$(2): x_2 = 5 - 1.22s_2 \ge 0$	\Rightarrow s ₂ \leq 4.10	$\rangle \Rightarrow$	$S_1 = 0$ when
$(3): x_1 = 15 + 3.24s_2 \ge 0$	$\Rightarrow s_2 \geq -4.63$	J	$S_2 = 2.47$

 s_2 enters and s_1 leaves the basis: perform row operations

-z			$-0.87s_1$		-0.37 <i>s</i> ₃	=	-52	$(0)-(1)\cdot\frac{2.84}{3.24}$
			0.31 <i>s</i> 1	$+s_{2}$	$-0.12s_{3}$	=	2.47	$(1) \cdot \frac{1}{3.24}$
		<i>x</i> ₂	-0.37 <i>s</i> 1		$+0.12s_{3}$	=	2	$(2)-(1)\cdot \frac{1.22}{3.24}$
	x_1		$+s_1$			=	23	(3)+(1)

28/31

Optimal basic solution

-z		-0.87 <i>s</i> 1		-0.37 <i>s</i> 3	=	-52
		0.31 <i>s</i> ₁	+ <i>s</i> ₂	$-0.12s_{3}$	=	2.47
	<i>x</i> ₂	-0.37 <i>s</i> 1		$+0.12s_{3}$	=	2
<i>x</i> ₁		$+s_1$			=	23

- No marginal value is positive. No improvement can be made
- The optimal basis is given by $s_2 = 2.47$, $x_2 = 2$, and $x_1 = 23$
- Non-basic variables: $s_1 = s_3 = 0$

Summary of the solution course

basis	-z	<i>x</i> ₁	<i>x</i> ₂	<i>s</i> ₁	<i>s</i> ₂	<i>s</i> ₃	RHS
- <i>z</i>	1	2	3	0	0	0	0
s_1	0	1	0	1	0	0	23
<i>s</i> ₂	0	0.067	1	0	1	0	6
<i>s</i> ₃	0	3	8	0	0	1	85
- <i>z</i>	1	1.80	0	0	-3	0	-18
s_1	0	1	0	1	0	0	23
<i>x</i> ₂	0	0.07	1	0	1	0	6
s 3	0	2.47	0	0	-8	1	37
- <i>z</i>	1	0	0	0	2.84	-0.73	-45
s_1	0	0	0	1	3.24	-0.41	8
<i>x</i> ₂	0	0	1	0	1.22	-0.03	5
<i>x</i> ₁	0	1	0	0	-3.24	0.41	15
- <i>z</i>	1	0	0	-0.87	0	-0.37	-52
<i>s</i> ₂	0	0	0	0.31	1	-0.12	2.47
<i>x</i> ₂	0	0	1	-0.37	0	0.12	2
x_1	0	1	0	1	0	0	23

Solve the lego problem using the simplex method	
---	--

maximize	Ζ	=	$1600x_1$	+	1000 <i>x</i> ₂			
subject to			$2x_1$	+	<i>x</i> ₂	\leq	6	
			$2x_1$	+	$2x_2$	\leq	8	
					x_1, x_2	\geq	0	