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Course evaluation

@ The first meeting was held on Friday, March 24 at 9.30.
@ The second meeting will be held during week 17 (April, 24-28)
@ Notes will be published in the course’'s PingPong event

@ Any voluntary representative from GU is also welcome!
Anyone?

Contact any student representative to present your opinion:
@ Arvid Bjurklint (TKTEM)
@ Frida Eriksson (TKTEM)
@ Oskar Holmstedt (TKTEM)
@ Stefanus Ivarsson Bergenhem (MPSYS)
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Linear programs, convex polyhedra, extreme points

A linear optimization model — a linear program

o n In vector notation
minimize z = CiX; :
Z; 7 min  z=-c%x
a1 s.t. Ax<b
subject to Za;jxj-gb,-, i=1,...,m x>0
j=1
x>0, j=1,...,n c,xcR" beR™,

A ¢ RM*n
Gj, ajj, bj: constant parameters

The feasible region is a polyhedron, X C R

X::{XZO"

n
Zany-Sb,-,izL---’m}:{XEO”IAbe}

Jj=1
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Linear programs, convex polyhedra and extreme points

(Ch. 4.1)

Definition (Convex combination)

A convex combination of the points x°, p=1,..., P, is a point x
that can be expressed as

P P
x=> x> XNp=1 A, 2>0, p=1...,P
p=1 p=1

[DRAW ON THE BOARD]|
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Linear programs, convex polyhedra and extreme points
(Ch. 4.1)

Intersection of linear constraints form a convex set

The feasible region of a linear program is a convex set, since for
any two feasible points x! and x? and any \ € [0,1] it holds that

n n n
Sa(Md+(1-2pF) = AP apd + (1N Y
= =1

j=1
< Abj+ (1= N)b;
= b,', izl,...,m
and
)\le—l—(l—)\)sz > 0, j=1,...,n

[DRAW ON THE BOARD]
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Linear programs, convex polyhedra and extreme points
(Ch. 4.1)

Definition (Extreme point (Def. 4.2))

The point x¥ is an extreme point of the polyhedron X if xk € X
and it is not possible to express x* as a strict convex combination
of two distinct points in X.

l.e: Given x! € X, x> € X, and 0 < A < 1, it holds that
xk = Ax! + (1 — A\)x? only if x¥ = x! = x? hold.
[DRAW ON THE BOARD]|

Theorem (Optimal solution in an extreme point (Th. 4.2))

Assume that the feasible region X = {x > 0" | Ax < b} is
non-empty and bounded. Then, the minimum value of the
objective cTx is attained at (at least) one extreme point x* of X.
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A general linear program — notation

Definition (Notation of linear programs)

minimize or maximize ¢;xy + ...+ ChXp
<
subject to aj1x1 + ...+ ainx, = b, i=1,...,m
>
<0
e unrestricted insign », j=1,...,n
>0
The blue notation corresponds to the standard form )
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The standard form and the simplex method for linear

programs (Ch. 4.2)

@ Every linear program can be reformulated such that:

o all constraints are expressed as equalities with non-negative
right hand sides
o all variables involved are restricted to be non-negative

@ Referred to as the standard form

@ These requirements streamline the calculations of the simplex
method

@ Software solvers (e.g., Cplex, GLPK, Clp, Gurobi, SCIP)
handle also inequality constraints and unrestricted variables —
the reformulations are made automatically
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The simplex method—standard form reformulations

@ Slack variables:

n
n .
Sapg < by Vi 225 s =by Vi
= — | Jj=1 0 v
n . Xj > j
. > J - Y
o2 0,V s >0, Vi
@ The lego example:
2x1 +x < 6 2x1 +Xxo0 +5 = 6
2x1 +2x < 8 | <= | 2x1 +2x +sp, = 8
X1, X2 Z 0 X1,X2,51,52 Z 0

@ 51 and s, are called slack variables—they " fill out” the
(positive) distances between the left and right hand sides
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The simplex method—standard form reformulations

@ Surplus variables:

n
n .
Sapg > by Vi 225 s =bp Vi
4 — | Jj=1 o v
n . X > j
. > \J - b
X o= 0V s >0, Vi

@ Surplus variable s3 (another instance):

X1+X22800<:>X1+X2—53:800
X1, X2 2> 0 X1,X2,83 = 0
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The simplex method—standard form reformulations

@ Suppose that b < 0:

n

ia,-x,- <b | _ D (-a)g=-b —_Zam- —s =-—b
j=t .

j=1 x;
x>0,V X > 0,V) ’
@ Non-negative right hand side:

X1 —xp < —23 —x1 +xp > 23 —Xx1+xp —s4 =23
x1,x2 >0 x1,x2 >0 x1,x2,54 >0
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The simplex method—standard form reformulations

@ Suppose that some of the variables are unconstrained (here: k < n).
Replace x; with x}* — x? for the corresponding indices:

Zajxj—i—Zaj )+s =b

n

Zajxjgb j=k+1

Jj= ijoa j:]-a"'7ka

X >0,j=1,....k x>0, >0, j=k+1,....n
s>0

@ Sign-restricted (non-negative) variables:

x1+x <10 x1+x21—x22§10 x1+x21—x22—|—55:10
X1 2 0 X17X%7X22 > 0 X17X%7X227S5 ZO

12/31
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Basic feasible solutions (Ch. 4.3)

@ Consider m equations with n variables, where m < n

@ Set n — m variables to zero and solve (if possible) the
remaining (m x m) system of equations

o If the solution is unique, it is called a basic solution

Definition (Def. 4.3)

A basic solution to the m x n system of equations Ax = b is
obtained if n — m of the variables are set to 0 and the remaining
variables get their unique values from the solution to the remaining
m X m system of equations.

The variables that are set to 0 are called nonbasic variables and

the remaining m variables are called basic variables.
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Basic feasible solutions (Ch. 4.3)

@ A basic solution x corresponds to the intersection of m
hyperplanes in R™
o It is feasible if x > 0
o It is infeasible if x 2 0

@ Each extreme point of the feasible set is an intersection of m
hyperplanes such that all variable values are > 0

@ Basic feasible solution <= extreme point of the feasible set

ayxt + ...+ aipxn = bt x12>0
anx1 + ...+ apxp = by x2 >0
amiX1 + ...+ amnXn = b x, >0
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Basic feasible solutions

Assume that m < nand that b; > 0, i =1,...,m, and let
1 a1 ... din b1 X1

Consider the linear program to

minimize z = ctx
X

subject to Ax=Db
x>0

@ Partition x into m basic variables xg and n — m non-basic
variables xp, such that x = (xg,xy).

@ Analogously, let ¢ = (cg,cp) and A = (Ag,Ay) = (B,N)

@ The matrix B € R™*™ with inverse B~ (if it exists)
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Basic feasible solutions (Ch. 4.8)

Rewrite the linear program as

minimize z = cLxg + CyXp (1a)
subject to Bxg+Nxy = b (1b)
xg >0", xy > 077 (1c)

@ Multiply the equation (1b) with B=! from the left:
B !Bxg + B !Nxy = xg + B"!Nxy = B~'b
= xg = B7'b — B7INxy = B~}(b — Nxy) (2)
@ Replace xg in (1) by the expression (2):

cpxg+cyxy = cgB7H(b—Nxp)+cyxy = cgB  b+(cy—c5B N)xy

= minimize z=cEB7'b + (cy — cEBTIN)xy
subject to B !b— B !Nxy >0m xy>0"""m
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Basic feasible solutions

The rewritten program

minimize z = cgB b + (c} — c5B7IN)xpy (3a)
subject to B~'b—-B !Nxy > 07 (3b)
xy > 0™ (3¢)

At the basic solution defined by B C {1,...,n}:
@ Each non-basic variable takes the value 0, i.e., xy =0

@ The basic variables take the values
xg =B b — B !Nxy =B~1b

@ The value of the objective function is z = cEB‘lb

@ The basic solution is feasible if B~1b > 0™
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The simplex method: Optimality and feasibility and change
of basis (Ch. 4.4)

Optimality condition (for minimization)
The basis B is optimal if ¢y, — cTBB_lN > Qn-m
(marginal values = reduced costs > 0)

If not, choose as entering variable j € N the one with the
lowest (negative) value of the reduced cost ¢; — cfBA;

Feasibility condition
For all i € B it holds that x; = (B~!b); — (B71A;);x

Choose the leaving variable i* € B according to

o a
I = argmin
& ieB
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Simplex search for linear optimization (Ch. 4.6)

Overview of the simplex algorithm for linear optimization
(minimization)

© Initialization: Choose any feasible basis, construct the
corresponding basic solution x°, let t = 0

© Step direction: Select a variable to enter the basis using the
optimality condition (negative marginal value).
Stop if no entering variable exists

© Step length: Use the feasibility condition (smallest
non-negative quotient) to select a variable to leave the basis

O New iterate: Compute the new basic solution xt*1 by
performing matrix operations

©Q Let t:=1t+ 1 and repeat from step 2
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Basic feasible solutions, example

@ Constraints:

X1 < 23 (1)

00671 + x < 6 (2)

3x1 + 8 < 85 (3)

X1, X2 Z 0
@ Add slack variables:

X1 +s51 =23 (1)
0.067x7 —+Xo +5 =6 (2)
3x1 +8x +s3 =285 (3)

X1,X2,51,5,53 >0
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Basic and non-basic variables and solutions

basic basic solution non-basic point  feasible?

variables variables (0, 0)

S51,52,53 23 6 85 X1, X2 A yes
s1,%,a -5 43 281 53, X2 H no
51,52, X2 23 —4% 10% X1, 53 C no
S1,X1,53 —67 90 —185 52, X2 | no
S1, X2, S3 23 6 37 S, X1 B yes
X1,52,53 23 4% 16 S1,X2 G yes
X2,52,53 - - - S1,X1 - -
X1, X2, S1 15 5 8 S, S3 D yes
X1, X2, 52 23 2 21—75 51,53 F yes
X1,X2,53 23 4115 —19% 51,5 E no

T TS 5 o P X
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Basic feasible solutions correspond to solutions to the

system of equations that fulfil non-negativity

X1 +51 =23
0.067x7 +X2 +5> =
3x1 +8x +s3 = 8b
=23
AX1:X2:O:>|:51 s :6:|
s3 =85
s =23
BX1252:0:>|:X2 ' :6:|
8x2 +s3 =85
x + =23
D: S3 =5 = 0= { 0.067)& +x2 B =6 }
3x1 +8x2 =85
X1 =23
F: s35=51=0= { 0.067x; +x +s =6 }
3x1 +8x7 =85
i {
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Basic infeasible solutions corresp. to solutions to the

system of equations with one or more variables < 0

X1 +51 =23
0.067x1 +Xo +5> =
3x1 +8x +s3 = 8b
i
I8 10 15 20 | % ¢
[ X1 +s =23
H: Xp = S3 = 0= 0.067); ' +s5 =6
3x1 =85
[ s1 =23
C: x1=5=0= x2 +s =6 }
8xp =85
[ X1 +s =23
D' s =x=0= 0.067); ' =6
3x1 +s3 =285
[ 0 =23
- 51:X1:0:> X2  +s =6
| 8x +s3 =185
X: =23
E: s1=5=0= 0.067)(1 +x2 =6
3x1 +8x2 +s3 =85
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Basic feasible solutions and the simplex method

@ Express the m basic variables in terms of the n — m non-basic
variables

Example: Start at x; = xo = 0 = s1, S, S3 are basic

X1 +51 =23
%Xl —+X2 +s> =6
3x; +8xs +s3 =285

Express s1, 2, and s3 in terms of x; and x» (non-basic):

S1 = 23 —X1
Sy = 6 —1—15X1 —X2
s3= 8b —-3x1 —8x

@ We wish to maximize the value of the objective function 2x; + 3x,

Express the objective in terms of the non-basic variables:

(maximize) z=2x; + 3x & z—2x1—3x% =0
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Basic feasible solutions and the simplex method

The first basic solution can be represented as

-z +2x3  +3x =0|(0)
X1 +51 =23 | (1)

1—15X1 + X2 + S =06 (2)

3x1 +8x +s3 =85 (3)

@ Marginal values for increasing the non-basic variables x; and
xp from zero: 2 and 3, resp.
= Choose x» — let xp enter the basis DRAW GRAPH!!
@ One basic variable (s1, s, or s3) must leave the basis. Which?

The value of x, increases until a basic variable reaches the value 0:

(2)152:6—X220 =x <6 } 52:0whenxz:6

(3):53=85—-8x,>0 :>x2§10% (and s3 = 37)

@ sp will leave the basis
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Change basis through row operations

Eliminate s, from the basis let x> enter the basis—use row

operations:

-z 42x1 +3x = 01 (0)
X1 +s1 = 23 | (1)
%Xl +Xo +5 = 6 (2)
3x1  +8x +S3 = 85 (3)

-z +3Ix —3s, = —18](0)-3(2)
X1 +51 — 23 (1)—0'(2)
LX1 “+X2 +5> = 6 (2)
100 85, 45 — 37| (3)-8(2)

@ Corresponding basic solution: s; = 23, x, = 6, s3 = 37.
@ Nonbasic variables: x; = s, =0

@ The marginal value of xj is % > 0. Let x; enter the basis
@ Which one should leave? s, xo, or s37
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Change basis ... x; enters the basis (marginal value > 0)

—z +3x —3s, = 18] (0)
X1 +51 = 23 (].)
%%Xl “+X2 +5> = 6 (2)
ix1 —8s, +s3 = 37| (3)

The value of x; increases until a basic variable reaches the value 0:

(1):s55=23—x, >0 =>X1<23}:> s3 = 0 when

(2):x2:6—1lx120 = x; <90 X — 15

(3)253:37—1—;X120 =x1 <15

x1 enters and s3 leaves the basis: perform row operations:

—Z 4+2.84sy —0.73s3 = —45 (0)—(3)'§—%'§
s1 +3.24s, —0.41s3 = 8 (]_)_(3) .15
X2 +1.22s, —0.03s3 = 51 (2)—-(3)- g . 3
X1 —3.24s, +0.41s3 = 15 (3).§_§

4
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Change basis ... s, enters the basis (marginal value > 0)

—z +2.84s, —0.73s3 = —45] (0)
s1 +3.24s, —0.41s3 = 8 (].)

X2 +1.22s, —0.03s3 = 5 (2)

X1 —3.24s, +0.41s3 = 15 (3)

The value of s, increases until some basic variable value = 0:

(1) 151 =8-3245,>0 = s < 2.47 }
=

s1 = 0 when

(2) i x=5-125%>0 =s5<4.10 5 =247

(3):x=154+3245, >0 =5, > —463

v
s» enters and s; leaves the basis: perform row operations

—z —0.87s; —0.37s3 | = —52| (0)—(1)- 352
03ls; +s, —0.12s3 | = 247 | (1):35;

xy —0.37s; +0.12s3 | = 2| (2-(1) 3%
X1 +51 = 23| (3)+(1)

\
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Optimal basic solution

—z —0.87s; —0.37s3 = -—52
0.31s; +sp, —0.12s3 = 247

x> —0.37s1 +0.12s5 = 2

X1 +51 = 23

@ No marginal value is positive. No improvement can be made
@ The optimal basis is given by s, = 2.47, x, = 2, and x; = 23
@ Non-basic variables: s; =s3 =0

@ Optimal value: z =52
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Summary of the solution course

basis | -z x X0 51 5 s3 | RHS
—z 1 2 3 0 0 0 0
S1 0 1 0 1 0 0 23
S 0 0067 1 0 1 0 6
S3 0 3 8 0 0 1 85
—z 1 180 0 0 -3 0 -18
S1 0 1 0 1 0 0 23
X5 0 0.07 1 0 1 0 6
S3 0 247 O 0 -8 1 37
-z 1 0 0 0 284 -0.73 -45
S1 0 0 0 1 3.24 -0.41 8
X 0 0 1 0 1.22 -0.03 5
X1 0 1 0 0 -3.24 041 15
—z 1 0 0 -0.87 0 -0.37 -52
S 0 0 0 0.31 1 -0.12 | 2.47
X2 0 0 1 -0.37 0 0.12 2
X1 0 1 0 1 0 0 23
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Homework

Solve the lego problem using the simplex method

maximize z = 1600x; + 1000x;
subject to 2x1 + x < 6
2x1 + 2% < 8
xy, X2 =2 0
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