MVE165/MMG631

Linear and integer optimization with applications

Lecture 5

Linear programming duality and sensitivity analysis

Ann-Brith Strömberg

2017-03-29

A linear program with optimal value z^*

$$z^* = \max \ z := \ 20x_1 + 18x_2$$
 weights subject to $7x_1 + 10x_2 \le 3600$ (1) v_1 $16x_1 + 12x_2 \le 5400$ (2) v_2 $x_1, x_2 \ge 0$

[Draw Graph]

• What is the largest possible value of z (i.e., z^*)?

Compute upper estimates of z^* , e.g.:

• Multiply (1) by 3:

$$\Rightarrow 21x_1 + 30x_2 \le 10800 \qquad \Rightarrow z^* \le 10800$$

• Multiply (2) by 1.5:

$$\Rightarrow 24x_1 + 18x_2 \le 8100 \qquad \Rightarrow z^* \le 8100$$

• Combine: $0.6 \times (1) + 1 \times (2)$:

$$\Rightarrow 20.2x_1 + 18x_2 \le 7560$$

A linear program with optimal value z^*

maximize
$$z:= 20x_1 + 18x_2$$
 weights subject to $7x_1 + 10x_2 \le 3600$ (1) v_1 $16x_1 + 12x_2 \le 5400$ (2) v_2 $x_1, x_2 \ge 0$

[Draw Graph]

- Do better than guess—compute optimal weights!
- Value of estimate: $w = 3600v_1 + 5400v_2 \rightarrow \min$

Constraints on the weights

$$7v_1 + 16v_2 \ge 20$$

$$10v_1 + 12v_2 \ge 18$$

$$v_1, v_2 \ge 0$$

The best (lowest) possible upper estimate of z^*

minimize
$$w := 3600v_1 + 5400v_2$$

subject to $7v_1 + 16v_2 \ge 20$
 $10v_1 + 12v_2 \ge 18$
 $v_1, v_2 \ge 0$

A linear program!

[Draw Graph!!]

 It is called the *linear programming dual* of the original linear program

The lego model – the market problem

Consider the lego problem

maximize
$$z=1600x_1+1000x_2$$
 subject to $2x_1+x_2 \leq 6$ $2x_1+2x_2 \leq 8$ $x_1, x_2 \geq 0$

- Option: Sell bricks instead of making furniture
- $v_1(v_2)$ = price of a large (small) brick
- The market wishes to *minimize the payment*: min $6v_1 + 8v_2$

Sell only if prices are high enough

- $v_1 + 2v_2 > 1600$
- $v_1 + 2v_2 > 1000$
- $v_1, v_2 > 0$

- otherwise better to make tables
- otherwise better to make chairs
 - don't sell at a negative price

A general linear program on "standard form"

A linear program with n non-negative variables, m equality constraints (m < n), and non-negative right-hand-sides

maximize
$$z=\sum_{j=1}^n c_jx_j,$$
 subject to $\sum_{j=1}^n a_{ij}x_j=b_i,\ i=1,\ldots,m,$ $x_j\geq 0,\ j=1,\ldots,n,$

where

$$x_j \in \mathbb{R}$$
, $j = 1, \ldots, n$, $a_{ij} \in \mathbb{R}$, $i = 1, \ldots, m$, $j = 1, \ldots, n$, $b_i \ge 0$, $i = 1, \ldots, m$, $c_i \in \mathbb{R}$, $j = 1, \ldots, n$.

Or, on matrix form

$$\begin{aligned} \text{maximize} & & z = \mathbf{c}^{\mathrm{T}}\mathbf{x}, \\ \text{subject to} & & \mathbf{A}\mathbf{x} = \mathbf{b}, \\ & & & \mathbf{x} \geq \mathbf{0}^n, \end{aligned}$$

where

$$\mathbf{x} \in \mathbb{R}^n$$
, $\mathbf{A} \in$

$$\mathbb{R}^{m\times n}$$
,

$$\mathbf{b} \in \mathbb{R}_+^m$$
, $\mathbf{c} \in \mathbb{R}^n$.

Linear programming duality

To each primal linear program corresponds a dual linear program

The component forms of the primal and dual programs

An example of linear programming duality

A primal linear program

minimize
$$z=2x_1+3x_2$$
 weights/duals subject to
$$3x_1+2x_2=14$$
 y_1
$$2x_1-4x_2\geq 2$$
 y_2
$$4x_1+3x_2\leq 19$$
 y_3
$$x_1,x_2\geq 0$$

The corresponding dual linear program

maximization ←⇒ minimization

$$\begin{array}{ccc} \text{dual program} & \Longleftrightarrow & \text{primal program} \\ \text{primal program} & \Longleftrightarrow & \text{dual program} \end{array}$$

$$\begin{array}{cccc} \textit{constraints} & \Longleftrightarrow & \textit{variables} \\ \geq & \Longleftrightarrow & \leq 0 \\ \leq & \Longleftrightarrow & \geq 0 \\ = & \Longleftrightarrow & \text{free} \\ \end{array}$$

$$egin{array}{lll} \emph{variables} & & & & \emph{constraints} \\ \geq 0 & & & \geq \\ \leq 0 & & & \leq \\ \emph{free} & & & = \\ \end{array}$$

The dual of the dual of any linear program equals the primal

PrimalDualminimize $z = \mathbf{c}^{\mathrm{T}} \mathbf{x}$ (1a)maximize $w = \mathbf{b}^{\mathrm{T}} \mathbf{y}$ (2a)subject to $\mathbf{A}\mathbf{x} = \mathbf{b}$ (1b)subject to $\mathbf{A}^{\mathrm{T}} \mathbf{y} \leq \mathbf{c}$ (2b) $\mathbf{x} \geq \mathbf{0}^n$ (1c)

Weak duality [Th. 6.1]

Let \mathbf{x} be a feasible point in the primal (minimization) and \mathbf{y} be a feasible point in the dual (maximization). Then, it holds that

$$z = \mathbf{c}^{\mathrm{T}} \mathbf{x} \ge \mathbf{b}^{\mathrm{T}} \mathbf{y} = w$$

Proof:
$$z = \mathbf{c}^{\mathrm{T}} \mathbf{x} = \mathbf{c}^{\mathrm{T}} \mathbf{x}$$
 $\geq \mathbf{y}^{\mathrm{T}} \mathbf{A} \mathbf{x} = \mathbf{y}^{\mathrm{T}} \mathbf{b} = \mathbf{w}$.

In the course book, the primal is formulated with inequality constraints in (1b): adjust the dual and the proof for that case!

Primal		Dual
minimize	$z = \mathbf{c}^{\mathrm{T}}\mathbf{x}$	maximize $w = \mathbf{b}^{ ext{ iny T}} \mathbf{y}$
subject to	$\mathbf{A}\mathbf{x} = \mathbf{b}$	subject to $\mathbf{A}^{\mathrm{T}}\mathbf{y} \leq \mathbf{c}$
	$\mathbf{x} \geq 0^n$	

Strong duality

[Th. 6.3]

In a pair of primal and dual linear programs, if one of them has an optimal solution, so does the other, and their optimal values are equal.

Primal		Dual	
minimize z	$\mathbf{z} = \mathbf{c}^{\mathrm{T}}\mathbf{x}$	maximize	$w = \mathbf{b}^{ ext{ iny T}} \mathbf{y}$
subject to A	c = b	subject to	$\mathbf{A}^{\mathrm{\scriptscriptstyle T}}\mathbf{y} \leq \mathbf{c}$
×	$\mathfrak{c} \geq 0^n$		

Complementary slackness

[Th. 6.5; proof in the course book]

If \mathbf{x} is optimal in the primal and \mathbf{y} is optimal in the dual, then it holds that

$$\mathbf{x}^{\mathrm{\scriptscriptstyle T}}(\mathbf{c}-\mathbf{A}^{\mathrm{\scriptscriptstyle T}}\mathbf{y})=\mathbf{y}^{\mathrm{\scriptscriptstyle T}}(\mathbf{b}-\mathbf{A}\mathbf{x})=0.$$

If \mathbf{x} is feasible in the primal, \mathbf{y} is feasible in the dual, and $\mathbf{x}^{\mathrm{T}}(\mathbf{c} - \mathbf{A}^{\mathrm{T}}\mathbf{y}) = \mathbf{y}^{\mathrm{T}}(\mathbf{b} - \mathbf{A}\mathbf{x}) = 0$, then

x and **y** are optimal in their respective problems.

Primal Dual

$$z^* := \min z = \mathbf{c}_B^{\mathrm{T}} \mathbf{x}_B + \mathbf{c}_N^{\mathrm{T}} \mathbf{x}_N$$
 $w^* := \max w = \mathbf{b}^{\mathrm{T}} \mathbf{y}$ subject to $\mathbf{B} \mathbf{x}_B + \mathbf{N} \mathbf{x}_N = \mathbf{b}$ subject to $\mathbf{B}^{\mathrm{T}} \mathbf{y} \leq \mathbf{c}_B$ $\mathbf{N}^{\mathrm{T}} \mathbf{y} \leq \mathbf{c}_N$

Duality theorem

[Th. 6.4]

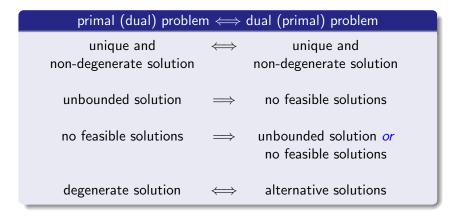
Assume that $\mathbf{x}_B = \mathbf{B}^{-1}\mathbf{b}$ is an optimal basic (feasible) solution to the primal problem. Then $\mathbf{y}^T = \mathbf{c}_B^T \mathbf{B}^{-1}$ is an optimal solution to the dual problem and $z^* = w^*$.

Proof structure

[full proof in the course book]

- $\mathbf{0} \ \mathbf{y}^{\mathrm{T}} = \mathbf{c}_{B}^{\mathrm{T}} \mathbf{B}^{-1}$ is feasible in the dual problem
- 2 The optimal objective values z^* and w^* are equal
- **3** Follows from complementarity: $(\mathbf{x}_B, \mathbf{x}_N)$ and \mathbf{y} are feasible in the primal and dual respective problem and $z^* = w^*$

Relations between primal and dual optimal solutions



Homework

Exercises on linear programming duality

• Formulate and solve graphically the dual of:

minimize
$$z = 6x_1 + 3x_2 + x_3$$

subject to $6x_1 - 3x_2 + x_3 \ge 2$
 $3x_1 + 4x_2 + x_3 \ge 5$
 $x_1, x_2, x_3 \ge 0$

- Then find the optimal primal solution
- Verify that the dual of the dual equals the primal

- B = index set of basic var's, N = index set of non-basic var's
- $\Rightarrow |B| = m \text{ and } |N| = n m$
 - Partition matrix/vectors: $\mathbf{A} = (\mathbf{B}, \mathbf{N}), \mathbf{x} = (\mathbf{x}_B, \mathbf{x}_N), \mathbf{c} = (\mathbf{c}_B, \mathbf{c}_N)$
 - The matrix B (N) contains the columns of A corresponding to the index set B (N) — Analogously for x and c

Original linear program

minimize
$$z = \mathbf{c}^{\mathrm{T}} \mathbf{x}$$
 subject to $\mathbf{A} \mathbf{x} = \mathbf{b}$, $\mathbf{x} > \mathbf{0}^n$

Rewritten linear program

minimize
$$z = \mathbf{c}_B^{\mathrm{T}} \mathbf{x}_B + \mathbf{c}_N^{\mathrm{T}} \mathbf{x}_N$$

subject to $\mathbf{B} \mathbf{x}_B + \mathbf{N} \mathbf{x}_N = \mathbf{b}$, $\mathbf{x}_B \geq \mathbf{0}^m, \ \mathbf{x}_N \geq \mathbf{0}^{n-m}$

Substitute: $\mathbf{x}_B = \mathbf{B}^{-1}\mathbf{b} - \mathbf{B}^{-1}\mathbf{N}\mathbf{x}_N \Longrightarrow$

minimize
$$z = \mathbf{c}_B^{\mathrm{T}} \mathbf{B}^{-1} \mathbf{b} + [\mathbf{c}_N^{\mathrm{T}} - \mathbf{c}_B^{\mathrm{T}} \mathbf{B}^{-1} \mathbf{N}] \mathbf{x}_N$$
 subject to $\mathbf{B}^{-1} \mathbf{b} - \mathbf{B}^{-1} \mathbf{N} \mathbf{x}_N \geq \mathbf{0}^m,$ $\mathbf{x}_N \geq \mathbf{0}^{n-m}$

Optimality and feasibility (review)

Optimality condition (for minimization)

The basis B is *optimal* if $\mathbf{c}_N^{\mathrm{T}} - \mathbf{c}_B^{\mathrm{T}} \mathbf{B}^{-1} \mathbf{N} \ge \mathbf{0}^{n-m}$ (marginal values = reduced costs ≥ 0)

If not, choose as *entering* variable $j \in N$ the one with the lowest (negative) value of the reduced cost $c_j - \mathbf{c}_B^{\mathrm{T}} \mathbf{B}^{-1} \mathbf{A}_j$

Feasibility condition

For all $i \in B$ it holds that $x_i = (\mathbf{B}^{-1}\mathbf{b})_i - (\mathbf{B}^{-1}\mathbf{A}_j)_i x_j$

Choose the *leaving* variable $i^* \in B$ according to

$$i^* = \arg\min_{i \in B} \left\{ \frac{(\mathbf{B}^{-1}\mathbf{b})_i}{(\mathbf{B}^{-1}\mathbf{A}_j)_i} \;\middle|\; (\mathbf{B}^{-1}\mathbf{A}_j)_i > 0
ight\}$$

In the simplex tableau, we have

basis	-z	\mathbf{x}_B	×N	s	RHS	
-z	1	0	$\frac{x_{N}}{c_{N}^{\scriptscriptstyle{\mathrm{T}}}-c_{B}^{\scriptscriptstyle{\mathrm{T}}}B^{-1}N}$	$-\mathbf{c}_B^{\mathrm{T}}\mathbf{B}^{-1}$	$-\mathbf{c}_B^{\mathrm{T}}\mathbf{B}^{-1}\mathbf{b}$	
x _B	0	ı	$B^{-1}N$	B^{-1}	$B^{-1}b$	

- s denotes possible slack variables [columns for s are copies of certain columns for (x_B, x_N)]
- The computations performed by the simplex algorithm involve matrix inversions (i.e., \mathbf{B}^{-1}) and *updates* of these
- A non-basic (basic) variable enters (leaves) the basis ⇒ one column, A_i, in B is replaced by another, A_k
- Row operations \Leftrightarrow Updates of \mathbf{B}^{-1} (and of $\mathbf{B}^{-1}\mathbf{N}$, $\mathbf{B}^{-1}\mathbf{b}$, and $\mathbf{c}_{R}^{\mathrm{T}}\mathbf{B}^{-1}$)
- ⇒ Efficient numerical computations are crucial for the performance of the simplex algorithm

Sensitivity analysis—changes in the optimal solution as functions of changes in the problem data (Ch. 5)

- How does the optimum change when the right-hand-sides (resources, e.g.) change?
- When the objective coefficients (prices, e.g.) change?

Assume that the basis B is optimal:

minimize
$$z = \mathbf{c}_B^{\mathrm{T}} \mathbf{B}^{-1} \mathbf{b} + [\mathbf{c}_N^{\mathrm{T}} - \mathbf{c}_B^{\mathrm{T}} \mathbf{B}^{-1} \mathbf{N}] \mathbf{x}_N$$
 subject to $\mathbf{B}^{-1} \mathbf{b} - \mathbf{B}^{-1} \mathbf{N} \mathbf{x}_N \geq \mathbf{0}^m,$ $\mathbf{x}_N \geq \mathbf{0}^{n-m},$

where $\mathbf{x}_B = \mathbf{B}^{-1}\mathbf{b} - \mathbf{B}^{-1}\mathbf{N}\mathbf{x}_N$

Shadow price = dual price

[Def. 5.3]

The *shadow price* of a constraint is defined as the change in the optimal value as a function of the (marginal) change in the RHS. It equals the optimal value of the corresponding dual variable. In AMPL: display constraint_name.dual

- Suppose **b** changes to $\mathbf{b} + \Delta \mathbf{b}$
- ⇒ New optimal value:

$$z^{\text{new}} = \mathbf{c}_B^{\text{T}} \mathbf{B}^{-1} (\mathbf{b} + \Delta \mathbf{b}) = z + \mathbf{c}_B^{\text{T}} \mathbf{B}^{-1} \Delta \mathbf{b}$$

• The current basis is feasible if

$$\mathbf{B}^{-1}(\mathbf{b} + \Delta \mathbf{b}) \geq 0$$

- If not: negative values will occur in the RHS of the simplex tableau
- The reduced costs are unchanged (positive, at optimum)
 ⇒ this can be resolved using the dual simplex method

A linear program

minimize
$$z = -x_1 -2x_2$$

subject to $-2x_1 +x_2 \le 2$
 $-x_1 +2x_2 \le 7$
 $x_1 \le 3$
 $x_1, x_2 \ge 0$

Draw Graph

The optimal solution is given by

basis	-z	x_1	x_2	s_1	<i>s</i> ₂	s ₃	RHS
-z	1	0	0	0	1	2	13
<i>x</i> ₂	0	0	1	0	$\frac{1}{2}$	$\frac{1}{2}$	5
x_1	0	1	0	0	Ō	$\overline{1}$	3
s_1	0	0	0	1	$-\frac{1}{2}$	<u>3</u> 2	3

Change the right-hand-side according to

$$\begin{array}{lll} \text{minimize} & z = & -x_1 & -2x_2 \\ \text{subject to} & & -2x_1 & +x_2 & \leq 2 \\ & & -x_1 & +2x_2 & \leq 7+\delta \\ & & x_1 & & \leq 3 \\ & & x_1, x_2 & \geq 0 \end{array}$$

The change in the RHS is given by $\mathbf{B}^{-1}(0,\delta,0)^{\mathrm{T}}=(\frac{1}{2}\delta,0,-\frac{1}{2}\delta)^{\mathrm{T}}$ \Rightarrow new optimal tableau:

basis	-z	<i>X</i> ₁	<i>X</i> 2	s_1	s ₂	s 3	RHS
-z	1	0	0	0	1	2	
<i>x</i> ₂	0	0	1	0	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{5+\frac{1}{2}\delta}{3}$
x_1	0	1	0	0	Ō	ī	3
s_1	0	0	0	1	$-\frac{1}{2}$	3	$3-\frac{1}{2}\delta$

- The current basis is feasible if $-10 \le \delta \le 6$ (i.e., if RHS ≥ 0)
- In AMPL: display constraint name.down, .current, .up

Suppose $\delta = 8$. The simplex tableau then appears as

basis	-z	<i>x</i> ₁	<i>x</i> ₂	s_1	s ₂	s 3	RHS
-z	1	0	0	0	1	2	21
<i>X</i> ₂	0	0	1	0	$\frac{1}{2}$	$\frac{1}{2}$	9
x_1	0	1	0	0	Ō	$\overline{1}$	3
s_1	0	0	0	1	$-\frac{1}{2}$	<u>3</u> 2	-1

- Dual simplex iteration: $s_1 = -1$ has to leave the basis
- Find smallest ratio between reduced cost (non-basic column) and (negative) elements in the "s₁-row" (to stay optimal)

s_2 will enter the basis — new optimal tableau:

basis	-z	x_1	<i>x</i> ₂	s_1	s ₂	s ₃	RHS
-z	1	0	0	2	0	5	19
<i>X</i> ₂	0	0	1	1	0	2	8
x_1	0	1	0	0 -2	0	1	3
s ₂	0	0	0	-2	1	-3	2

Changes in the objective coefficients

Reduced cost

The *reduced cost* of a non-basic variable defines the change in the objective value when the value of the corresponding variable is (marginally) increased.

The basis B is optimal if $\mathbf{c}_N^{\mathrm{T}} - \mathbf{c}_B^{\mathrm{T}} \mathbf{B}^{-1} \mathbf{N} \geq \mathbf{0}^{n-m}$ (i.e., marginal values = reduced costs ≥ 0)

In AMPL: display variable_name.rc

- Suppose **c** changes to $\mathbf{c} + \Delta \mathbf{c}$
- The new optimal value:

$$\mathbf{z}^{\mathrm{new}} = (\mathbf{c}_B + \Delta \mathbf{c}_B)^{\mathrm{T}} \mathbf{B}^{-1} \mathbf{b} = z + \Delta \mathbf{c}_B^{\mathrm{T}} \mathbf{B}^{-1} \mathbf{b}$$

• The current basis is optimal if

$$(\mathbf{c}_N + \Delta \mathbf{c}_N)^{\mathrm{\scriptscriptstyle T}} - (\mathbf{c}_B + \Delta \mathbf{c}_B)^{\mathrm{\scriptscriptstyle T}} \mathbf{B}^{-1} \mathbf{N} \geq \mathbf{0}$$

If not: more simplex iterations to find the optimal solution

Changes in the objective coefficients

Change the objective according to

minimize
$$z = -x_1 + (-2 + \delta)x_2$$

subject to $-2x_1 + x_2 \le 2$
 $-x_1 +2x_2 \le 7$
 $x_1 \le 3$
 $x_1, x_2 \ge 0$

The changes in the reduced costs are given by $-(\delta,0,0)\mathbf{B}^{-1}\mathbf{N}=(-\frac{1}{2}\delta,-\frac{1}{2}\delta)\Rightarrow$ new optimal tableau:

basis	-z	x_1	<i>x</i> ₂	s_1	<i>s</i> ₂	s ₃	RHS
-z	1	0	0	0	$1-\frac{1}{2}\delta$	$2-\frac{1}{2}\delta$	$13-5\delta$
<i>x</i> ₂	0	0	1	0	1/2	$\frac{1}{2}$	5
x_1	0	1	0	0	Ō	Ī	3
s_1	0	0	0	1	$-\frac{1}{2}$	$\frac{3}{2}$	3

- The current basis is optimal if $\delta \leq 2$ (i.e., if reduced costs ≥ 0)
- In AMPL: display variable_name.down, .current, .up

Changes in the objective coefficients

Suppose $\delta = 4 \Rightarrow$ new tableau:

basis	-z	x_1	<i>x</i> ₂	<i>s</i> ₁	<i>s</i> ₂	s 3	RHS
-z	1	0	0	0	-1	0	-7
<i>x</i> ₂	0	0	1	0	$\frac{1}{2}$	$\frac{1}{2}$	5
x_1	0	1	0	0	0	1	3
s_1	0	0	0	1	$-\frac{1}{2}$	<u>3</u> 2	3

Let s_2 enter and x_2 leave the basis. New optimal tableau:

basis	-z	x_1	x_2	s_1	<i>s</i> ₂	<i>s</i> ₃	RHS
-z	1	0	2	0	0	1	3
s ₂	0	0	2	0	1	1	10
x_1	0	1	0	0	0	1	3
s_1	0	0	1	1	0	2	8