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An “intuitive” derivation of duality, |

A linear program with optimal value z*

z¥=max z:= 20x; +18x weights
subject to  7x; +10xx < 3600 (1) vi
16x; +12x, < 5400 (2) Vo
X1, X2 2 0

[DRAW GRAPH]
@ What is the largest possible value of z (i.e., z*)?

Compute upper estimates of z*, e.g.:

@ Multiply (1) by 3:
= 21x3 + 30x; < 10800 = z* <10800
@ Multiply (2) by 1.5:
= 24x1 + 18xp < 8100 = z" <8100
@ Combine: 0.6x(1)+1x(2):
= 20.2x3+18x, <7560 = z" <7560
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An “intuitive” derivation of duality, Il

A linear program with optimal value z*

maximize z:= 20x; +18x weights
subject to 7x1 +10x < 3600 (1) Vi
16x; +12xo < 5400 (2) Vo
X1, X2 Z 0

[DRAW GRAPH]
@ Do better than guess—compute optimal weights!

@ Value of estimate: w = 3600v; + 5400v, — min

Constraints on the weights

Tvi +16v, > 20
10v; + 12w, > 18
vi,v2 >0
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An “intuitive” derivation of duality, Il| (Ch. 6.1)

The best (lowest) possible upper estimate of z*

minimize w := 3600v; + 5400v»

subject to Tvi + 16w, > 20
10v; + 12v, > 18
vi,v2 20
@ A linear program! [DRAW GRAPH!!]

o It is called the linear programming dual of the original linear
program
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The lego model — the market problem

Consider the lego problem

maximize z = 1600x; + 1000x
subject to 2x1 + x < 6
2x1  + 2% < 8
X1, X2 2 0

@ Option: Sell bricks instead of making furniture
@ vi(v2) = price of a large (small) brick
@ The market wishes to minimize the payment: min 6v; + 8w

Sell only if prices are high enough

o 2v; + 2w, > 1600 — otherwise better to make tables
e vi + 2w, > 1000 — otherwise better to make chairs
o vi,vn >0 — don't sell at a negative price
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A general linear program on “standard form”

A linear program with n non-negative variables, m equality

constraints (m < n), and non-negative right-hand-sides

n

maximize zZ = E CJXJ,
j=1

n
subject to Z ajxj = b, i=1,...,m,
j=1

Xj Z 07 j:17"'7n7

Or, on matrix form
maximize z=c"x,
subject to Ax = b,

x>0,
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Linear programming duality

To each primal linear program corresponds a dual linear program

(Primal) (Dual)
minimize z=c"x maximize w=b"y
subject to Ax=b subject to A'y <c
x> 0"
(Primal) (Dual)
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An example of linear programming duality

A primal linear program

minimize z= 2x3 +3x weights/duals
subject to 3x1 +2x =14 %1
2X1 —4X2 2
4X1 +3X2 < 19 ¥3
x1,x2 =0
maximize w = 14y; +2y, +19y3 weights/primals
subject to 3y1. +2y»  +4y3 <2 X1
2y1 —4y>» +3y3 =3 X2
%1 free
Y2
y3 <0
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Rules for constructing the dual program

maximization <= minimization

dual program <= primal program
primal progtam <=  dual program
constraints = variables

> — <0

< — >0

= — free

variables <— constraints

>0 — >

<0 <~ <

free = =

The dual of the dual of any linear program equals the primal
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Duality properties, |

Primal
minimize z=c"x (1a) maximize w = bTy (23)
subject to Ax=b  (1b) subject to ATy <c  (2b)
x>0" (1)

Weak duality

Let x be a feasible point in the primal (minimization) and y be a
feasible point in the dual (maximization). Then, it holds that

z=c"x>b'y=w

Proof: z = «¢%x > y'Ax = y'b
~~ ~—~ ~~
(1a) (2b), (1¢) (1b) (2a)
In the course book, the primal is formulated with inequality

constraints in (1b): adjust the dual and the proof for that case!
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Duality properties, Il

Primal
minimize z=c"x maximize w=b"y
subject to Ax=b subject to A'y <c
x>0"

Strong duality

In a pair of primal and dual linear programs, if one of them has an
optimal solution, so does the other, and their optimal values are
equal.
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Duality properties, Il

Primal
minimize z=c"x maximize w=b"y
subject to Ax=b subject to A'y <c
x>0"
Complementary slackness [Th. 6.5; proof in the course book]
If x is optimal in the primal and y is optimal in the dual, then it
holds that

x"(c—A"y) =y"(b— Ax) = 0.

If x is feasible in the primal, y is feasible in the dual, and
x"(c— ATy) = y"(b — Ax) =0, then
x and y are optimal in their respective problems.
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Duality properties, IV

z" == min z :cExB + c%xN w* :=maxw =b'y
subject to Bxg + Nxy =b subject to BTy < cg
xg > 0", xy > 077" NTy < cp
Duality theorem [Th. 6.4]

Assume that xg = B~ b is an optimal basic (feasible) solution to
the primal problem. Then yT = CEB_I is an optimal solution to
the dual problem and z* = w*.

Proof structure [full proof in the course book]

Q y' = LB s feasible in the dual problem

© The optimal objective values z* and w* are equal

© Follows from complementarity: (xg,xy) and y are feasible in
the primal and dual respective problem and z* = w*
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Relations between primal and dual optimal solutions

primal (dual) problem <= dual (primal) problem

unique and — unique and
non-degenerate solution non-degenerate solution
unbounded solution = no feasible solutions
no feasible solutions =—>  unbounded solution or
no feasible solutions
degenerate solution — alternative solutions
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Homework

Exercises on linear programming duality

@ Formulate and solve graphically the dual of:

minimize z= 6x3 +3x -+x3
subject to 6x1 —3x0 +x3 >2
3x1 +4xp +x3 >5
X1,X2, X3 >0

@ Then find the optimal primal solution

o Verify that the dual of the dual equals the primal
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Derivation of the simplex method (review) (Ch. 4.8)

@ B = index set of basic var's, N = index set of non-basic var's
= |Bl=mand [N|=n—m
@ Partition matrixfvectors: A=(B,N), x=(xg,xy), c=(cp,cpn)
@ The matrix B (N) contains the columns of A corresponding
to the index set B (N) — Analogously for x and ¢

Rewritten linear program

Original linear program

minimize z = ¢"x minimize z = CgXg + CyXn
subject to Ax = b, subject to Bxg + Nxpy = b,
x> 0" xg >0, xy >0"""

Substitute: xg = B"'b — B~!Nxy =

minimize z=cEB7'b + [cy — c5B IN]xy
subject to B~b — B INxy > 07,
xN 2 On—m
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Optimality and feasibility (review)

Optimality condition (for minimization)
The basis B is optimal if ¢}, — c5B~IN > 07—™

(marginal values = reduced costs > 0)

If not, choose as entering variable j € N the one with the lowest
(negative) value of the reduced cost ¢; — c5B~1A;

Feasibility condition
For all i € B it holds that x; = (B™'b); — (B™'A;);x;

Choose the leaving variable i* € B according to

(B_lb),‘

i* :argmin{m

ieB

(B7'A)); > o}
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In the simplex tableau, we have

basis ‘ —Z Xp XN ‘ s ‘ RHS
—z | 1 0 cy—cEB'N| ;B |—cEB'b

XB 0 | BN B! B~ !b

@ s denotes possible slack variables [columns for s are copies of
certain columns for (xg,xy)]

@ The computations performed by the simplex algorithm involve
matrix inversions (i.e., B™!) and updates of these

@ A non-basic (basic) variable enters (leaves) the basis = one
column, A;, in B is replaced by another, A,

@ Row operations < Updates of B! (and of B—IN, B~!b, and
ctB1)

= Efficient numerical computations are crucial for the

performance of the simplex algorithm
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Sensitivity analysis—changes in the optimal solution as

functions of changes in the problem data (Ch. 5)

@ How does the optimum change when the right-hand-sides
(resources, e.g.) change?

@ When the objective coefficients (prices, e.g.) change?

Assume that the basis B is optimal:

minimize z=c5B7'b + [cy — c5B !N]xy
subject to B 'b— B Nxy > 07,
XN Z 0n_m7

where xg = B~1b — B"INxy
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Changes in the right-hand-side coefficients

Shadow price = dual price

The shadow price of a constraint is defined as the change in the
optimal value as a function of the (marginal) change in the RHS.
It equals the optimal value of the corresponding dual variable.

In AMPL: display constraint_name.dual

@ Suppose b changes to b+ Ab
= New optimal value:

new _ CEB_I(b + Ab) =z + CEB_IAb

@ The current basis is feasible if B-!(b+ Ab) >0
@ If not: negative values will occur in the RHS of the simplex
tableau

@ The reduced costs are unchanged (positive, at optimum)
= this can be resolved using the dual simplex method
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Changes in the right-hand-side coefficients

A linear program

minimize z= —x1 —2x
subject to —2x1 +x <2
—X1 +2X2 <7
X1 S 3
x1,x2 >0

DRAW GRAPH

The optimal solution is given by

basis | —z x3 x» s1 s s3| RHS
—z 1 0 0 O 1 2 13
X0 0 0 1 0 % % 5
X1 0 1 0 O O 1 3
ss|] 0 0 0 1 -3 3 3

\
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Changes in the right-hand-side coefficients

Change the right-hand-side according to

minimize z= —x3 —2x
subject to —2x1 +x <2
—x1 +2x% <T7+96
X1 S 3

X1, X2 20

The change in the RHS is given by B=1(0,4,0)" = (16,0, —16)"

= new optimal tableau:

basis | —z x1 x» s1 s s3 | RHS
—z| 1 0 0 0 1 2][13+4§
x| 0 0 1 0 3 11]5+3%0
x| 0 1 0 0 0 1|3
s| 0 0 0 1 -1 3/3-1

@ The current basis is feasible if =10 < 6 <6 (i.e.,, if RHS >0)

@ In AMPL: display constraint name.down, .current, .up
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Changes in the right-hand-side coefficients

Suppose § = 8. The simplex tableau then appears as

basis | —z x1 x» s s s3 | RHS
—z 1 0 0 0 1 2 21
x| 0 0 1 0 L I 9
X1 0 1 0 O 0 1 3
s| 00 0 1 -1 3| -1
@ Dual simplex iteration: s; = —1 has to leave the basis

@ Find smallest ratio between reduced cost (non-basic column)
and (negative) elements in the “s;-row” (to stay optimal)

s> will enter the basis —
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Changes in the objective coefficients

The reduced cost of a non-basic variable defines the change in the
objective value when the value of the corresponding variable is
(marginally) increased.

The basis B is optimal if ¢}, — c5B™IN > 0"~ (i.e., marginal
values = reduced costs > 0)

In AMPL: display variable name.rc

@ Suppose c changes to ¢ + Ac
@ The new optimal value:

2"V = (cg + Acg)"™B7b =z + Ac;B~'b

@ The current basis is optimal if
(CN + ACN)T — (CB + ACB)TB_lN >0

@ If not: more simplex iterations to find the optimal solution
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Changes in the objective coefficients

Change the objective according to

minimize z= —x3 +(—2+)x
subject to —2x1 +xy <2
—X1 +2xp <7
X1 S 3
x1,x2 >0

The changes in the reduced costs are given by

—(6,0,0)B™IN = (=30, —16) = new optimal tableau:

basis | —z x31 x» s S S3 RHS
-z 1 0 0 O 1—%6 2—%6 13 —56
X0 0O 0o 1 0 % % 5
X1 0 1 0 O 0 1 3
s| 0 0 0 1 -3 3 3

@ The current basis is optimal if § < 2 (i.e., if reduced costs > 0)

@ In AMPL: display variable name.down, .current, .up
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Changes in the objective coefficients

Suppose § = 4 = new tableau:

basis | —z x; x» s s s3| RHS
—z 1 0 0 0 -1 0 —7
X0 0 0 1 O % % 5
X1 0 1 0 0 0 1 3
ss| 0 0 0 1 -3 3 3

Let s, enter and x» leave the basis. New optimal tableau:

basis | —z x1 x» s s s3| RHS
—z 1 0 2 0 0 1 3
S 0 0 2 0 1 1 10

X1 0 1 0 0 0 1 3

s 0O 0 1 1 0 2 8
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