MVE165/MMG631

Linear and integer optimization with applications

Lecture 6

Discrete optimization models and applications;

complexity

Ann-Brith Strömberg

2017-03-31

Recall the diet problem

- Sets
 - $\mathcal{J} = \{1, \ldots, n\}$ kinds of food
 - $\mathcal{I} = \{1, \dots, m\}$ kinds of nutrients
- Variables
 - ullet x_j , $j\in\mathcal{J}$ purchased amount of food j per day
- Parameters
 - c_i , $j \in \mathcal{J}$ cost of food j
 - ullet $a_j,\,j\in\mathcal{J}$ available amount of food j
 - p_{ij} , $i \in \mathcal{I}$, $j \in \mathcal{J}$ content of nutrient i in food j
 - q_i lower limit on the amount of nutrient i per day
 - Q_i upper limit on the amount of nutrient i per day

The diet problem

The linear optimization model

minimize
$$\sum_{j=1}^n c_j x_j,$$
 subject to $q_i \leq \sum_{j=1}^n p_{ij} x_j \leq Q_i, \quad i=1,\ldots,m,$ $0 \leq x_j \leq a_j, \quad j=1,\ldots,n.$

- What if we are allowed to buy at most N different kinds of food, where N < n?
- Define new variables: $y_j = \begin{cases} 1 & \text{if food } j \text{ is in the diet} \\ 0 & \text{otherwise} \end{cases}$
- Model the following relations:

$$y_j = 0 \Rightarrow x_j = 0$$

 $y_i = 1 \Rightarrow x_i \ge 0$

The cardinality constrained diet problem

- Add a *cardinality constraint*: $\sum_{j=1}^{n} y_j \leq N$
- Modify the availability constraints: $0 \le x_j \le a_j y_j$

An integer linear optimization model

minimize
$$\sum_{j=1}^n c_j x_j,$$
 subject to $q_i \leq \sum_{j=1}^n p_{ij} x_j \leq Q_i,$ $i=1,\ldots,m,$
$$\sum_{j=1}^n y_j \leq N,$$

$$0 \leq x_j \leq a_j y_j, \qquad j=1,\ldots,n,$$
 $y_j \in \{0,1\}, \qquad j=1,\ldots,n.$

The cardinality constrained diet problem—an instance

- Buy at most N types of food
- Totally 20 types of food: SourMilk, Milk, Potato, Carrot, HaricotVerts, GreenBeans, Spinache, Tomato, Cabbage, Banana, Queenberries, OrangeJuice, Chicken, Salmon, Cod, Rice, Pasta, Egg, Apple, Ham
- Constraints on 13 nutrients: Energy, Carbohydrates, Fat, Protein, Fibres, SaturFat, SingleUnsaturFat, MultiUnsaturFat, VitaminD, VitaminC, Folate, Iron, Salt

N	20	10
Apple	3	3
Banana	2	2
Carrot	2.3	3
Chicken	0.4	
Egg	2	2
HaricotVerts	0.1	
Milk	3	3
Pasta	2	2
Potato	2.3	2.4
Rice	1	1
Salmon	0.5	8.0
SourMilk	2	2

For $N \leq 9$ no feasible solution exists

Variables

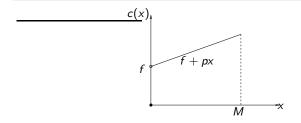
- Linear programming (LP) uses continuous variables: $x_{ij} \ge 0$
- Integer linear programming (ILP) uses integer variables: $x_{ij} \in \mathbb{Z}$
- Binary linear programming (BLP) uses binary variables: $x_{ij} \in \mathbb{B}$
- If both continuous and integer/binary variables are used in a program, it is called a mixed integer/binary linear program (MILP)/(MBLP)

Constraints

- An ILP (or MILP) possesses linear constraints and integer requirements on the variables
- Also logical relations, e.g., if—then and either—or, can be modelled
- This is done by introducing additional (binary) variables and additional constraints

MILP modelling—fixed charges

- Send a truck \Rightarrow Start-up cost: f > 0
- Load loafs of bread on the truck \Rightarrow cost per loaf: p > 0
- x = # bread loafs to transport from bakery to store



The cost function $c: \mathbb{R}_+ \mapsto \mathbb{R}_+$ is nonlinear and discontinuos

$$c(x) := \begin{cases} 0 & \text{if } x = 0 \\ f + px & \text{if } 0 < x \le M \end{cases}$$

MILP modelling—fixed charges

- Let y = # trucks to send (here, y equals 0 or 1)
- Replace c(x) by fy + px
- Constraints: $0 \le x \le My$ and $y \in \{0, 1\}$

$$\begin{bmatrix} \min & fy + px \\ \text{s.t.} & x - My & \leq & 0 \\ & x & \geq & 0 \\ & y & \in & \{0, 1\} \end{bmatrix}$$

•
$$y = 0$$
 \Rightarrow $x = 0$ \Rightarrow $fy + px = 0$

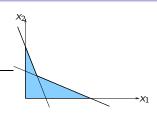
•
$$y = 1$$
 \Rightarrow $x \le M$ \Rightarrow $fy + px = f + px$

•
$$x > 0$$
 \Rightarrow $y = 1$ \Rightarrow $fy + px = f + px$

•
$$x = 0$$
 \Rightarrow $y = 0$ But: Minimization will push y to zero!

Discrete alternatives

- Suppose: either $x_1 + 2x_2 \le 4$ or $5x_1 + 3x_2 \le 10$, and $x_1, x_2 > 0$ must hold
- Not a convex set



Let $M \gg 1$ and define $y \in \{0, 1\}$

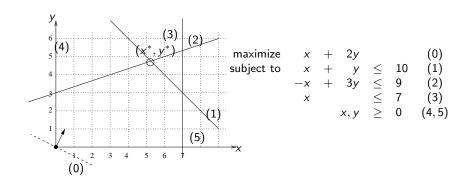
$$\Rightarrow \text{ New set of constraints:} \begin{bmatrix} x_1 + 2x_2 & -My \le 4 \\ 5x_1 + 3x_2 - M(1-y) \le 10 \\ & y \in \{0,1\} \\ x_1, x_2 & \ge 0 \end{bmatrix}$$

•
$$y = \begin{cases} 0 \Rightarrow x_1 + 2x_2 \le 4 \text{ must hold} \\ 1 \Rightarrow 5x_1 + 3x_2 \le 10 \text{ must hold} \end{cases}$$

Exercises: Homework

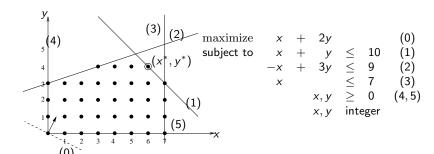
- **①** Suppose that you are interested in choosing from a set of investments $\{1, \ldots, 7\}$ using 0/1 variables. Model the following constraints:
 - 1 You cannot invest in all of them
 - 2 You must choose at least one of them
 - 3 Investment 1 cannot be chosen if investment 3 is chosen
 - Investment 4 can be chosen only if investment 2 is also chosen
 - 3 You must choose either both investment 1 and 5 or neither
 - You must choose either at least one of the investments 1, 2 and 3 or at least two investments from 2, 4, 5 and 6
- Formulate the following as mixed integer progams:
 - $u = \min\{x_1, x_2\}$, assuming that $0 \le x_j \le C$ for j = 1, 2
 - $v = |x_1 x_2|$ with $0 \le x_j \le C$ for j = 1, 2
 - **3** The set $X \setminus \{x^*\}$ where $X = \{x \in Z^n | Ax \le b\}$ and $x^* \in X$

Linear programming: A small example



- Optimal solution: $(x^*, y^*) = (5\frac{1}{4}, 4\frac{3}{4})$
- Optimal objective value: $14\frac{3}{4}$

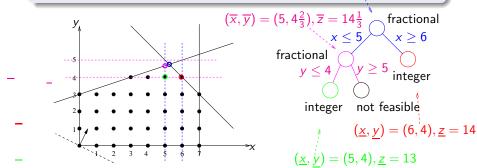
Integer linear programming: A small example



- What if the variables must take integer values?
- Optimal solution: $(x^*, y^*) = (6, 4)$
- Optimal objective value: $14 < 14\frac{3}{4}$
- The optimal value decreases (possibly constant) when the variables are restricted to possess only integral values

ILP: Solution by the branch–and–bound algorithm (e.g., Cplex, XpressMP, or GLPK) (Ch. 15.1–15.2)

- Relax integrality requirements \Rightarrow linear, continuous problem $\Rightarrow (\overline{x}, \overline{y}) = (5\frac{1}{4}, 4\frac{3}{4}), \overline{z} = 14\frac{3}{4}$
- Search tree: branch over fractional variable values



- Select an optimal collection of objects or investments or projects or ...
 - c_j = benefit of choosing object j, j = 1, ..., n
- Limits on the budget
 - $a_j = \text{cost of object } j, j = 1, \dots, n$
 - b = total budget
- Variables: $x_j = \begin{cases} 1, & \text{if object } j \text{ is chosen}, \\ 0, & \text{otherwise}, \end{cases}$ $j = 1, \dots, n$
- Objective function:

$$\max \sum_{j=1}^{n} c_j x_j$$

• Budget constraint:

$$\sum_{j=1}^n a_j x_j \le b$$

Binary variables:

$$x_j \in \{0,1\}, j = 1,\ldots,n$$

A small knapsack instance

- Optimal solution $\mathbf{x}^* = (0, 1, 2444, 0, 0), z_1^* = 27157212$
- Cplex finds this solution in 0.015 seconds

The equality version

- Optimal solution $\mathbf{x}^* = (7334, 0, 0, 0, 0), z_2^* = 1562142$
- Cplex computations interrupted after 1700 sec. ($pprox rac{1}{2}$ hour)
 - No integer solution found
 - Best upper bound found: 25 821 000
 - 55 863 802 branch-and-bound nodes visited
 - Only one feasible solution exists!

Computational complexity

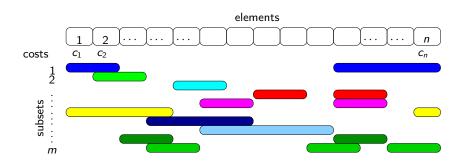
- Mathematical insight yields successful algorithms
- \bullet E.g., the assignment problem: Assign n persons to n jobs
- # feasible solutions: $n! \Rightarrow$ Combinatorial explosion
- ullet An algorithm \exists that solves this problem in time $\mathcal{O}(n^4) \propto n^4$

Complete enumeration of all solutions is <i>not</i> efficient						
n	2	5	8	10	100	1000
n!	2	120	40 000	3 600 000	$9.3 \cdot 10^{157}$	$4.0 \cdot 10^{2567}$
2 ⁿ	4	32	256	1 024	$1.3 \cdot 10^{30}$	$1.1\cdot 10^{301}$
n^4	16	625	4 100	10 000	$1.0 \cdot 10^{8}$	$1.0\cdot 10^{12}$
$n \log n$	0.6	3.5	7.2	10	200	3 000

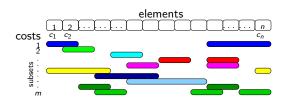
- Binary knapsack: $\mathcal{O}(2^n)$
- Continuous knapsack (sorting of $\frac{c_j}{a_i}$): $\mathcal{O}(n \log n)$

The set covering problem

- A number (n) of items and a cost for each item
- A number (m) of subsets of the n items
- Find a selection of the items such that each subset contains at least one selected item and such that the total cost for the selected items is minimized



The set covering problem



Mathematical formulation

 $\begin{array}{ccc} \text{min} & \mathbf{c}^{\mathrm{T}}\mathbf{x} \\ \text{subject to} & \mathbf{A}\mathbf{x} & \geq & \mathbf{1} \\ & \mathbf{x} & \text{binary} \end{array}$

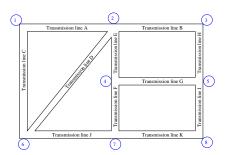
- $oldsymbol{c} \in \mathbb{R}^n$ and $oldsymbol{1} = (1,\dots,1)^{\mathrm{T}} \in \mathbb{R}^m$ are constant vectors
- $\mathbf{A} \in \mathbb{R}^{m \times n}$ is a matrix with entries $a_{ii} \in \{0,1\}$
- $\mathbf{x} \in \mathbb{R}^n$ is the vector of variables
- Related models: set partitioning ($\mathbf{Ax} = \mathbf{1}$), set packing ($\mathbf{Ax} \leq \mathbf{1}$)

Example: Monitoring states in electrical networks

- Electric power companies need to monitor their systems' state as defined by a set of state variables (e.g., voltage magnitude at loads and phase angle at generators)
- Place phase measurement units (PMUs) at selected locations in the system
- Because of the high cost of a PMU: minimize their number while maintaining the ability to monitor the entire system

Example: Illustration of the PMU locating problem

- Let the graph G = (V, E) represent an electric power system:
 - $v \in V$ represents an electrical node (connecting transmission lines, loads, and generators)
 - ullet $e \in E$ represents a transmission line joining two electrical nodes
- Formulate a mathematical model of locating (at nodes) a smallest set of PMUs to monitor the entire system (of lines)



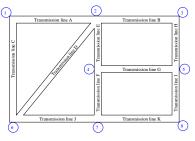
Model

Define variables and constraints

Locate PMUs: Mathematical model

- Binary variables for each node: $x_j = 1$ if a PMU is located at node j, $x_j = 0$ otherwise
- Monitor each transmission line by at least one PMU

$$\begin{array}{lll} \text{A: } x_1 + x_2 \geq 1 & \text{G: } x_4 + x_5 \geq 1 \\ \text{B: } x_2 + x_3 \geq 1 & \text{H: } x_3 + x_5 \geq 1 \\ \text{C: } x_1 + x_6 \geq 1 & \text{I: } x_5 + x_8 \geq 1 \\ \text{D: } x_2 + x_6 \geq 1 & \text{J: } x_6 + x_7 \geq 1 \\ \text{E: } x_2 + x_4 \geq 1 & \text{K: } x_7 + x_8 \geq 1 \\ \text{F: } x_4 + x_7 > 1 & \end{array}$$



- Objective function: min $x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 + x_8$
- An optimal solution: $x_2 = x_5 = x_6 = x_7 = 1$, $x_1 = x_3 = x_4 = x_8 = 0$. Objective value: 4

More modelling examples

- Given three telephone companies A, B, and C, who charge a fixed start-up price of 16, 25, and 18, respectively
- For each minute of call-time A, B, and C charge 0.25, 0.21, and 0.22, respectively
- We expect to call for 200 minutes. Which company should we choose?
- x_i = number of minutes called by $i \in \{A, B, C\}$
- Binary variables $y_i = 1$ if $x_i > 0$, $y_i = 0$ otherwise (pay start-up price only if calls are made with company i)

Mathematical model

min
$$0.25x_1 + 0.21x_2 + 0.22x_3 + 16y_1 + 25y_2 + 18y_3$$
 subject to
$$x_1 + x_2 + x_3 = 200$$

$$0 \le x_i \le 200y_i, \quad i = 1, 2, 3$$

$$y_i \in \{0, 1\}, \quad i = 1, 2, 3$$

Process three jobs on one machine

- Each job j has a processing time p_j , a due date d_j , and a penalty cost c_j if the due date is missed
- How should the jobs be scheduled to minimize the total penalty cost?

	Processing	Due date	Late penalty
Job	time (days)	(days)	\$/day
1	5	25	19
2	20	22	12
3	15	35	34

HOMEWORK!

Assign each task to one resource, and each resource to one task

- ullet A cost c_{ij} for assigning task i to resource $j,\ i,j\in\{1,\ldots,n\}$
- Variables: $x_{ij} = \begin{cases} 1, & \text{if task } i \text{ is assigned to resource } j \\ 0, & \text{otherwise} \end{cases}$

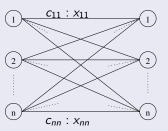
min
$$\sum_{i=1}^n \sum_{j=1}^n c_{ij} x_{ij}$$
 subject to
$$\sum_{j=1}^n x_{ij} = 1, \quad i = 1, \dots, n$$

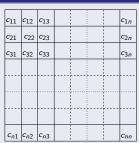
$$\sum_{i=1}^n x_{ij} = 1, \quad j = 1, \dots, n$$

$$x_{ij} \geq 0, \quad i, j = 1, \dots, n$$

The assignment model

Choose one element from each row and each column





- This integer linear model has integral extreme points, since it can be formulated as a network flow problem
- Therefore, it can be efficiently solved using specialized (network) linear programming techniques
- Even more efficient special purpose (primal-dual-graph-based) algorithms exist