MVE165/MMG631

Linear and integer optimization with applications
Lecture 6
Discrete optimization models and applications;
complexity

Ann-Brith Strémberg

2017-03-31

Lecture 6 Linear and integer optimization with applications

1/25



Recall the diet problem

® Sets
o J={1,...,n} — kinds of food
e Z={1,...,m} — kinds of nutrients

@ Variables
o xj, j € J — purchased amount of food j per day

@ Parameters
e ¢j, j € J — cost of food j

(<]

aj, j € J — available amount of food j

<

pij, I € Z, j € J — content of nutrient / in food j
o g; — lower limit on the amount of nutrient / per day

@ Q; — upper limit on the amount of nutrient / per day
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The diet problem

The linear optimization model

n
minimize E GiXj,
J=1

n
subject to gi < ZPUXJ < Q;, i=1,...,m,
Jj=1

0< ngaja j=1...,n.

@ What if we are allowed to buy at most N different kinds of
food, where N < n?
@ Define new variables: y; = { (1) if food Jsm the diet
otherwise
@ Model the following relations:
yi=0=x=0
yi=1=x2>0
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The cardinality constrained diet problem

n
@ Add a cardinality constraint: Z yi<N
j=1
@ Modify the availability constraints: 0 < x; < a;y;

An integer linear optimization model

n
minimize CiXj
Jj=1
n
subject to g; < Zpuxj < Q;, i=1,...,m,

j=t
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The cardinality constrained diet problem—an instance

N 20 10
@ Buy at most N types of food Apple 3 3
@ Totally 20 types of food: Banana 2 2
SourMilk, Milk, Potato, Carrot 2.3 3
Carrot, HaricotVerts, Chicken 0.4 _
GreenBeans, Spinache, Egg 2 2
Tomato, Cabbage, Banana, HaricotVerts 01 e
Queenberries, Orangeluice, . ’
Chicken, Salmon, Cod, Rice, Milk 3 3
Pasta, Egg, Apple, Ham Pasta 2 2
. . Potato 2.3 2.4
@ Constraints on 13 nutrients: .
Rice 1 1
Energy, Carbohydrates, Fat,
Protein, Fibres, SaturFat, Salmon 0.5 0.8
SingleUnsaturFat, SourMilk 2 2
MultiUnsaturFat, VitaminD, For N < 9 no feasible
VitaminC, Folate, Iron, Salt solution exists
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Modelling with integer variables (Ch. 13.1)

@ Linear programming (LP) uses continuous variables: x;; > 0

o Integer linear programming (ILP) uses integer variables: x;; € Z
® Binary linear programming (BLP) uses binary variables: x;; € B
°

If both continuous and integer/binary variables are used in a
program, it is called a mixed integer/binary linear program
(MILP)/(MBLP)

Constraints

@ An ILP (or MILP) possesses linear constraints and integer
requirements on the variables

@ Also logical relations, e.g., if~then and either—or, can be
modelled

@ This is done by introducing additional (binary) variables and
additional constraints
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MILP modelling—fixed charges

@ Send a truck = Start—up cost: f > 0
@ Load loafs of bread on the truck = cost per loaf: p > 0

@ x = # bread loafs to transport from bakery to store

c(x)

The cost function ¢ : Ry — R, is nonlinear and discontinuos

C(X)::{o if x=0

f+px if 0<x<M
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MILP modelling—fixed charges

Let y = # trucks to send (here, y equals 0 or 1)

Replace c(x) by fy + px
Constraints: 0 < x < My and y € {0,1}

min fy + px

s.t. x—My < 0
New model: i ; 0
y € {01}
oy=0 = x=0 = fy+px=0
oy = = x<M = fy+px=Ff+px
x>0 = y=1 = fy+px=Ff+px
o X = # y =0 But: Minimization will push y to zero!
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Discrete alternatives

X
@ Suppose:
either x1 + 2xo < 4 or 5x; + 3x < 10,
and xq, x> > 0 must hold
@ Not a convex set X1
Let M > 1 and define y € {0,1}
X1+ 2x0 —My <4
_ )<
= New set of constraints: Pl e M(l y) =
y€{0,1}
X1, X2 >0
o v — 0 = x1+2x% <4 must hold
Y=11 = 5x1 +3x» < 10 must hold
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Exercises: Homework

© Suppose that you are interested in choosing from a set of
investments {1,...,7} using 0/1 variables. Model the
following constraints:

You cannot invest in all of them

You must choose at least one of them

Investment 1 cannot be chosen if investment 3 is chosen

Investment 4 can be chosen only if investment 2 is also chosen

You must choose either both investment 1 and 5 or neither

You must choose either at least one of the investments 1, 2

and 3 or at least two investments from 2, 4, 5 and 6

00000

© Formulate the following as mixed integer progams:
@ u=min{x;,x2}, assuming that 0 < x; < C for j = 1,2
QO v=|xg—x|with0<x; <Cforj=1,2
O Theset X\ {x*} where X = {x € Z"|Ax < b} and x* € X

Lecture 6 Linear and integer optimization with applications 10/25



Linear programming: A small example

maximize x + 2y (0)
subject to x + y < 10 (1)
-x 4+ 3y < 9 (2)
X < 7 3)
x,y > 0 (4,5)
1.2 3 4 5 6 7 X

@ Optimal solution: (x*,y*) = (5%’41)
@ Optimal objective value: 14%
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Integer linear programming: A small example

maximize  x + 2y (0)
subjectto x + y < 10 (1)
-x + 3y < 9 (2)
X < 7 (3)
x,y > 0 (4,5
X,y integer

L2 03
0)"

@ What if the variables must take integer values?

@ Optimal solution: (x*,y*) = (6,4)

@ Optimal objective value: 14 < 14%

@ The optimal value decreases (possibly constant) when the
variables are restricted to possess only integral values
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ILP: Solution by the branch—and—bound algorithm

(e.g., Cplex, XpressMP, or GLPK) (Ch. 15.1-15.2)

® Relax integrality requirements =

@ Search tree: branch over
fractional variable values

)y >5.
y =4,V = Yinteger

. h
integer not feasible

Lecture 6
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The knapsack problem—budget constraint (Ch

@ Select an optimal collection of objects or investments or
projects or ...
o ¢j = benefit of choosing object j, j=1,...,n
@ Limits on the budget
@ aj = cost of object j, j=1,...,n
@ b = total budget
. 1, if object j is chosen, .
@ Variables: x; = ’ jectJ T j=1,...,n
0, otherwise,
@ Objective function: max 7 GiXj
@ Budget constraint: Z};l ajx; < b
@ Binary variables: x;€{0,1}, j=1,...,n
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Computational complexity

A small knapsack instance

zi = max 213x1 +1928x, + 11111x3 + 2345x4 + 9123x5
subject to  12223x; +12224x, +36674x3+61119x:4 +85569x5s < 89 643482
X1,...,X5 > 0,integer

@ Optimal solution x* = (0, 1,2444,0,0), zf = 27157 212
@ Cplex finds this solution in 0.015 seconds

The equality version

7z, = max 213x1 + 1928x; + 11111x3 + 2345x4 + 9123x5
subject to  12223x; +12224x, +36674x3 +61119x4 +85569xs = 89643482
X1,...,X5 > 0,integer

@ Optimal solution x* = (7334,0,0,0,0), z5 = 1562142

@ Cplex computations interrupted after 1700 sec. (& % hour)
No integer solution found

Best upper bound found: 25 821 000

55863 802 branch—and—bound nodes visited

Only one feasible solution exists!

<

¢ © €
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Computational complexity

@ Mathematical insight yields successful algorithms
o E.g., the assignment problem: Assign n persons to n jobs

@ # feasible solutions: n! = Combinatorial explosion

@ An algorithm 3 that solves this problem in time O(n*) oc n*

Complete enumeration of all solutions is not efficient

n | 2]5] 8 | 10 | 100 | 1000
n! 2 | 120 | 40000 | 3600000 | 9.3 - 1057 | 4.0 - 1027
2 4 | 32 | 256 1024 1.3-10°° | 1.1-10%"
n* 16 | 625 | 4100 | 10000 1.0-10% | 1.0-10%2
nlogn | 0.6 | 3.5 7.2 10 200 3000

@ Binary knapsack: O(2")

@ Continuous knapsack (sorting of :—j) O(nlogn)
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The set covering problem

@ A number (n) of items and a cost for each item
@ A number (m) of subsets of the n items

@ Find a selection of the items such that each subset contains at
least one selected item and such that the total cost for the
selected items is minimized

elements

o Lo L L L e
costs C1 (&) Cn
| —
2
E)
aasTr S

subsets
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The set covering problem

elements

CECIMMMEDEN I G N r

costs a @ Cn

Mathematical formulation

min cTx
subjectto Ax > 1
x  binary
@ ceR"and 1 =(1,...,1)T € R™ are constant vectors

@ A € R™*" is a matrix with entries a; € {0,1}

@ x € R" is the vector of variables

o Related models: set partitioning (Ax = 1), set packing
(Ax <1)
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Example: Monitoring states in electrical networks

@ Electric power companies need to monitor their systems' state
as defined by a set of state variables (e.g., voltage magnitude
at loads and phase angle at generators)

@ Place phase measurement units (PMUs) at selected locations
in the system

@ Because of the high cost of a PMU: minimize their number
while maintaining the ability to monitor the entire system
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Example: lllustration of the PMU locating problem

@ Let the graph G = (V, E) represent an electric power system:

@ v € V represents an electrical node (connecting transmission
lines, loads, and generators)
o e € E represents a transmission line joining two electrical nodes

@ Formulate a mathematical model of locating (at nodes) a
smallest set of PMUs to monitor the entire system (of lines)

1 @) :
T lineA T lineB
E & % g
'Sé A § E - .
B & 7 el O) Define variables and
- £ constraints
/) 8
T lineJ T lineK
® ® g
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Locate PMUs: Mathematical model

@ Binary variables for each node:
x; = 1 if a PMU is located at node j, x; = 0 otherwise

@ Monitor each transmission line by at least one PMU

1 @ 3
Aixi+x>1 G xg+x5>1 rem——_— 4 z
B:xo4+x3>1 Hixs+x5>1 g 4 g %
Cxi+x2>1 I: x5 +xg > 1 g f‘f e F@
D:xo+x5>1 Jixg+x7>1 g / g E
E:xo4x>1 K: x7 4+ xg > 1 : !
F:xg+x7>1 e )

© ® O,

@ Objective function: min  x1 + xo + x3 + x4 + x5 + X + X7 + Xg

@ An optimal solution: x» = x5 = x5 = x7 = 1,
x1 = x3 = x4 = xg = 0. Objective value: 4
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More modelling examples (Ch. 13.3)

@ Given three telephone companies A, B, and C, who charge a
fixed start-up price of 16, 25, and 18, respectively

@ For each minute of call-time A, B, and C charge 0.25, 0.21,
and 0.22, respectively

@ We expect to call for 200 minutes. Which company should we
choose?

4

@ x; = number of minutes called by i € {A, B, C}
@ Binary variables y; = 1 if x; > 0, y; = 0 otherwise
(pay start-up price only if calls are made with company /)

Mathematical model

min O.25X1 + O.21X2 + O.22X3 + 16y1 i 25y2 i 18y3
subject to x1+x+x3 = 200

0<x < 200y;, i=1,2,3

yi € {0,1}, i=1,23
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More modelling examples (2) (Ch. 13.9)

Process three jobs on one machine

@ Each job j has a processing time p;, a due date d;, and a
penalty cost ¢; if the due date is missed

@ How should the jobs be scheduled to minimize the total
penalty cost?

Processing Due date Late penalty

Job time (days)  (days) $/day
1 5 25 19
2 20 22 12
3 15 35 34
HOMEWORK!
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The assignment model (Ch. 13.5)

Assign each task to one resource, and each resource to one task

@ A cost cjj for assigning task i to resource j, i,j € {1,...,n}

1, if task / is assigned to resource j

@ Variables: xj; = { 0. otherwise
M

n n
min g E Cij Xij

i=1 j=1

n
subject to Zx,-j = 1, i=1,...,n
j=1

n
dxp =1, j=1...,n
i=1

xj > 0, ihj=1,...,n
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The assignment model

Choose one element from each row and each column

ai | |as 3 L lan
1 |2 e : L |
31 |c32 |e33 i | lean
Cn1 |Cn2 |Cn3 | i lenn

@ This integer linear model has integral extreme points, since it
can be formulated as a network flow problem

@ Therefore, it can be efficiently solved using specialized
(network) linear programming techniques

@ Even more efficient special purpose
(primal—dual—graph-based) algorithms exist
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