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Areas of applications, examples (Ch. 9.1)

Structural optimization

Design of aircraft, ships, bridges, etc

Decide on the material and the topology and thickness of a
mechanical structure

Minimize weight, maximize stiffness, constraints on
deformation at certain loads, strength, fatigue limit, etc

Analysis and design of traffic networks

Estimate traffic flows and discharges

Detect bottlenecks

Analyze effects of traffic signals, tolls, etc
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Areas of applications, more examples (Ch. 9.1)

Least squares

Adaptation of data

Engine development, design of antennas or tyres, etc.

For each function evaluation a computationally expensive (time
consuming) simulation may be needed

Maximize the volume of a cylinder

... while keeping, e.g., the surface area constant

Wind power generation

The energy content in the wind is ∝ v3 (in Ass 3a it is discretized
and measured data is used)
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An overview of nonlinear optimization

General notation for nonlinear programs

minimize x∈Rn f (x)

subject to gi (x) ≤ 0, i ∈ L,

hi(x) = 0, i ∈ E .

Some special cases

Unconstrained problems (L = E = ∅):

minimize f (x) subject to x ∈ R
n

Convex programming: f convex, gi convex, i ∈ L,
hi linear, i ∈ E .

Linear constraints: gi , i ∈ L, and hi , i ∈ E

Quadratic programming: f (x) = c⊤x+ 1
2x

⊤Qx

Linear programming: f (x) = c⊤x
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Properties of nonlinear programs

The mathematical properties of nonlinear optimization
problems can be very different

No algorithm exists that solves all nonlinear optimization
problems

An optimal solution does not have to be located at an
extreme point

Nonlinear programs can be unconstrained
What if a linear program has no constraints?

f may be differentiable or non-differentiable
E.g., the Lagrangean dual objective function

For convex problems: Algorithms (typically) converge to an
optimal solution

Nonlinear problems can have local optima that are not global

optima
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Consider the problem to minimize f (x) subject to x ∈ S

x

f (x)

x1 x2 x3 x4x5 x6 x7
S

Possible extremal points are

boundary points of S = [x1, x7] (i.e., {x1, x7})

stationary points, where f ′(x) = 0 (i.e., {x2, . . . , x6})

discontinuities in f or f ′ Draw!
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Boundary and stationary points (Ch. 10.0)

Boundary points

x is a boundary point to the feasible set

S = {x ∈ R
n | gi (x) ≤ 0, i ∈ L}

if gi (x) ≤ 0, i ∈ L, and gi (x) = 0 for at least one index i∈ L

Stationary points

x is a stationary point to f if ∇f (x) = 0n (for n = 1: if f ′(x) = 0)
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Local and global minima (maxima) (Ch. 2.4)

Consider the nonlinear optimization problem to

minimize f (x) subject to x ∈ S

Local minimum

In words: A solution is a local minimum if it is feasible and no
other feasible solution in a sufficiently small neighbourhood of
the solution at hand has a lower objective value

Formally: x is a local minimum if x ∈ S and ∃ε > 0 such that
f (x) ≤ f (x) for all x ∈ { y ∈ S : ‖y − x‖ ≤ ε } Draw!!

Global minimum

In words: A solution is a global minimum if it is feasible and
no other feasible solution has a lower objective value

Formally: x is a global minimum if x ∈ S and f (x) ≤ f (x) for
all x ∈ S
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When is a local optimum also a global optimum? (Ch. 9.3)

The concept of convexity is essential

Functions: convex (minimization), concave (maximization)

Sets: convex (minimization and maximization)

The minimization (maximization) of a convex (concave)
function over a convex set is referred to as a convex
optimization problem

Definition 9.5: Convex optimization problem

If f and gi , i ∈ L, are convex functions, then

minimize f (x) subject to gi (x) ≤ 0, i ∈ L

is said to be a convex optimization problem

Theorem 9.1: Global optimum

Let x∗ be a local optimum of a convex optimization problem. Then
x∗ is also a global optimum
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Convex functions

A function f is convex on S if, for any x, y ∈ S it holds that
f (αx+ (1− α)y) ≤ αf (x) + (1− α)f (y) for all 0 ≤ α ≤ 1

x xy yαx + (1 − α)y αx + (1 − α)y

f (x)
f (x)

f (y)

f (y)

αf (x) + (1 − α)f (y)

αf (x) + (1 − α)f (y)

f(αx + (1 − α)y)

f(αx + (1 − α)y)

A convex function A non-convex function

The function f is strictly convex on S if, for any x, y ∈ S such that
x 6= y it holds that

f (αx+ [1− α]y) < αf (x) + (1− α)f (y) for all 0 < α < 1
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Convex sets

A set S is convex if, for any x, y ∈ S it holds that
αx+ (1− α)y ∈ S for all 0 ≤ α ≤ 1

Examples

x

x
y

y
Convex sets Non-convex sets

Consider a set S defined by the intersection of m = |L|
inequalities, where the functions gi : R

n 7→ R, i ∈ L, as

S = { x ∈ R
n | gi (x) ≤ 0, i ∈ L }

Theorems 9.2 & 9.3

If all the functions gi , i ∈ L, are convex on R
n, then the set S is

convex
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The Karush-Kuhn-Tucker conditions: necessary conditions
for optimality

Let S := { x ∈ R
n | gi (x) ≤ 0, i ∈ L }

Assume that the following hold

the function f : Rn 7→ R is differentiable;
the functions gi : R

n 7→ R, i ∈ L, are convex and differentiable;
there exists a point x ∈ S such that gi(x) < 0, i ∈ L

If x∗ ∈ S is a local minimum of f over S , then there exists a
vector µ ∈ R

m (where m = |L|) such that

∇f (x∗) +
∑

i∈L

µi∇gi (x
∗) = 0n,

µigi (x
∗) = 0, i ∈ L,

µ ≥ 0m. �
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Geometry of the Karush-Kuhn-Tucker conditions
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∆
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S

Figur: Geometric interpretation of the Karush-Kuhn-Tucker conditions.
At a local minimum, the negative gradient of the objective function can
be expressed as a non-negative linear combination of the gradients of the
active constraints at this point
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The Karush-Kuhn-Tucker conditions: sufficient for
optimality under convexity

Assume that the functions f , gi : R
n 7→ R, i ∈ L, are convex and

differentiable, and let S = { x ∈ R
n | gi (x) ≤ 0, i ∈ L }

If the conditions (where m = |L|)

∇f (x∗) +
∑

i∈L

µi∇gi (x
∗) = 0n,

µigi (x
∗) = 0, i ∈ L,

µ ≥ 0m

hold, then x∗ ∈ S is a global minimum of f over S . �

The Karush-Kuhn-Tucker conditions can also be stated for
optimization problems with equality constraints

For unconstrained optimization KKT reads: ∇f (x∗) = 0

For a quadratic program KKT forms a system of linear
(in)equalities plus the complementarity constraints
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The optimality conditions can be used to..

verify an (local) optimal solution

solve certain special cases of nonlinear programs (e.g.
quadratic programs)

algorithm construction

derive properties of a solution to a non-linear program
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Example

minimize f (x) := 2x21 + 2x1x2 + x22 − 10x1 − 10x2
subject to x21 + x22 ≤ 5

3x1 + x2 ≤ 6

Is x0 = (1, 2)⊤ a Karush-Kuhn-Tucker point?

Is it an optimal solution?

Derive: ∇f (x) = (4x1 + 2x2 − 10, 2x1 + 2x2 − 10)⊤,
∇g1(x) = (2x1, 2x2)

⊤, and ∇g2(x) = (3, 1)⊤

4x01 + 2x02 − 10 + 2x01µ1 + 3µ2 = 0
2x01 + 2x02 − 10 + 2x02µ1 + µ2 = 0

µ1[(x
0
1 )

2 + (x02 )
2 − 5] = µ2(3x

0
1 + x02 − 6) = 0

µ1, µ2 ≥ 0

⇐⇒
2µ1 + 3µ2 = 2
4µ1 + µ2 = 4

0µ1 = −µ2 = 0
µ1, µ2 ≥ 0

⇒ µ2 = 0 ⇒ µ1 = 1 ≥ 0
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Example, continued

OK, the Karush-Kuhn-Tucker conditions hold

Is the solution optimal? Check convexity!

∇2f (x) =

(

4 2
2 2

)

, ∇2g1(x) =

(

2 0
0 2

)

, ∇2g2(x) = 02×2

⇒ f , g1, and g2 are convex

⇒ x0 = (1, 2)⊤ is an optimal solution and f (x0) = −20
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General iterative search method for
unconstrained optimization (Ch. 2.5.1)

1 Choose a starting solution, x0 ∈ R
n. Let k = 0

2 Determine a search direction dk

3 If a termination criterion is fulfilled ⇒ Stop!

4 Determine a step length, tk , by solving:

minimizet≥0 ϕ(t) := f (xk + t · dk)

5 New iteration point, xk+1 = xk + tk · d
k

6 Let k := k + 1 and return to step 2

How choose search directions dk , step lengths tk , and termination

criteria?
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Improving search directions (Ch. 10)

Goal: f (xk+1) < f (xk) (minimization)

How does f change locally in a direction dk at xk?

Taylor expansion (Ch. 9.2):
f (xk + tdk) = f (xk) + t∇f (xk)⊤dk +O(t2)

For sufficiently small t > 0:
f (xk + tdk) < f (xk) ⇒ ∇f (xk)⊤dk < 0

⇒

Definition

If ∇f (xk)⊤dk < 0 then dk is a descent direction for f at xk

If ∇f (xk)⊤dk > 0 then dk is an ascent direction for f at xk

We wish to minimize (maximize) f over Rn

⇒ Choose dk as a descent (an ascent) direction from xk
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An improving step
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Figur: At xk , the descent direction dk is generated. A step tk is taken in
this direction, producing xk+1. At this point, a new descent direction
dk+1 is generated, etc
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General iterative search method for
unconstrained optimization (Ch. 2.5.1)

1 Choose a starting solution, x0 ∈ R
n. Let k = 0

2 Determine a search direction dk

3 If a termination criterion is fulfilled ⇒ Stop!

4 Determine a step length, tk , by solving:

minimizet≥0 ϕ(t) := f (xk + t · dk)

5 New iteration point, xk+1 = xk + tk · d
k

6 Let k := k + 1 and return to step 2
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Step length—line search (minimization) (Ch. 10.4)

Solve mint≥0 ϕ(t) := f (xk + t · dk) where dk is a descent
direction from xk

A minimization problem in one variable ⇒ Solution tk

Analytic solution: ϕ′(tk) = 0 (seldom possible to derive)

Numerical solution methods

The golden section method (reduce the interval of
uncertainty)

The bi-section method (reduce the interval of uncertainty)

Newton-Raphson’s method

Armijo’s method

In practice

Do not solve exactly, but to a sufficient improvement of the
function value: f (xk + tkd

k) ≤ f (xk)− ε for some ε > 0
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Line search
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Figur: A line search in a descent direction.
tk solves mint≥0 ϕ(t) := f (xk + t · dk)
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General iterative search method for unconstrained
optimization

1 Choose a starting solution, x0 ∈ R
n. Let k = 0

2 Determine a search direction dk

3 If a termination criterion is fulfilled ⇒ Stop!

4 Determine a step length, tk , by solving:

minimizet≥0 ϕ(t) := f (xk + t · dk)

5 New iteration point, xk+1 = xk + tk · d
k

6 Let k := k + 1 and return to step 2
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Termination criteria

Needed since ∇f (xk) = 0 will never be fulfilled exactly

Typical choices (εj > 0, j = 1, . . . , 4)

(a) ‖∇f (xk)‖ < ε1

(b) |f (xk+1)− f (xk)| < ε2

(c) ‖xk+1 − xk‖ < ε3

(d) tk < ε4

The criteria (a)–(d) are often combined

The search method only guarantees a stationary solution, whose
properties are determined by the properties of f (convexity, ...)
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Constrained optimization: Penalty methods

Consider both inequality and equality constraints

minimize x∈Rn f (x)

subject to gi (x) ≤ 0, i ∈ L, (1)

hi(x) = 0, i ∈ E .

Drop the constraints and add terms in the objective that penalize
infeasibile solutions

minimizex∈Rn Fµ(x) := f (x) + µ
∑

i∈L∪E

αi(x) (2)

where µ > 0 and αi (x) =

{

= 0 if x satisfies constraint i
> 0 otherwise

Common penalty functions (which of these are differentiable?)

i ∈ L: αi (x) = max{0, gi (x)} or αi (x) = (max{0, gi (x)})
2

i ∈ E : αi(x) = |hi (x)| or αi (x) = |hi(x)|
2
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Squared and non-squared penalty functions

minimize
(

x2 − 20 ln x
)

subject to x ≥ 5
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x2 − 20 ln x
x2−20 ln x+max{0, 5−x}
x2−20 ln x+(max{0, 5−x})2

Figur: Squared and non-squared penalty function. gi differentiable =⇒
squared penalty function differentiable
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Squared penalty functions

In practice: Start with a low value of µ > 0 and increase the
value as the computations proceed

Example: minimize (x2 − 20 ln x) subject to x ≥ 5 (∗)

⇒ minimize
(

x2 − 20 ln x + µ(max{0, 5 − x})2
)

(∗∗)
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x2 − 20 ln x

Figur: Squared penalty function: 6 ∃µ < ∞ such that an optimal solution
for (∗∗) is optimal (feasible) for (∗)
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Non-squared penalty functions

In practice: Start with a low value of µ > 0 and increase the
value as the computations proceed

Example: minimize
(

x2 − 20 ln x
)

subject to x ≥ 5 (+)

⇒ minimize
(

x2 − 20 ln x + µmax{0, 5 − x}
)

(++)
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x2 − 20 ln x

Figur: Non-squared penalty function: For µ ≥ 6 the optimal solution for
(++) is optimal (and feasible) for (+)
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Constrained optimization: Barrier methods

Consider only inequality constraints

minimize x∈Rn f (x)

subject to gi (x) ≤ 0, i ∈ L (3)

Drop the constraints and add terms in the objective that
prevents from approaching the boundary of the feasible set

minimizex∈Rn Fµ(x) := f (x) + µ
∑

i∈L

αi(x) (4)

where µ > 0 and αi (x) → +∞ as gi (x) → 0 (as constraint i
approaches being active)

Common barrier functions

αi(x) = − ln[−gi (x)] or αi (x) =
−1
gi (x)
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Logarithmic barrier functions

Choose µ > 0 and decrease it as the computations proceed

Example: minimize
(

x2 − 20 ln x
)

subject to x ≥ 5

⇒ minimize x>5

(

x2 − 20 ln x − µ ln(x − 5)
)
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Figur: Logarithmic barrier function: µ ∈ {10, 5, 2.5, 1.25, 0.625, 0.3125}Lecture 14 Linear and integer optimization with applications 31/33



Fractional barrier functions

Choose µ > 0 and decrease it as the computations proceed

Example: minimize
(

x2 − 20 ln x
)

subject to x ≥ 5

⇒ minimize x>5

(

x2 − 20 ln x + µ

x−5

)

2 3 4 5 6 7 8
−50

−40

−30

−20

−10

0

10

20

30

40

50

Figur: Fractional barrier function: µ ∈ {10, 5, 2.5, 1.25, 0.625}Lecture 14 Linear and integer optimization with applications 32/33



Summary of the theoretical content of the course ...

... which may appear at the oral exam:
Mathematical modelling of optimization problems; graphic
solution
Linear programming: BFSs; the simplex method; degeneracy;
multiple optima; unbounded solution; infeasibility; starting
solutions; LP duality; post-optimal and sensitivity analysis
Discrete and combinatorial optimization: models of specific
ILP problems; mathematical properties; complexity;
algorithms; local/global optima; neighbourhoods; heuristics
Network flows: Shortest paths; dynamic programming; LP
models of network flows; maximum flows; minimum cost
network flows; unimodularity; integrality property
Multi-objective optimization: Pareto optimality;
(non-)convexity; solution methods; objective space
representation;
Non-linear optimization: convexity; local/global optimality;
mathematical properties; solution methods
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