MVE165/MMG631 Linear and integer optimization with applications Lecture 14 Overview of nonlinear programming and summary of the course

Ann-Brith Strömberg

2018-05-15

Structural optimization

- Design of aircraft, ships, bridges, etc
- Decide on the material and the topology and thickness of a mechanical structure
- Minimize weight, maximize stiffness, constraints on deformation at certain loads, strength, fatigue limit, etc

Analysis and design of traffic networks

- Estimate traffic flows and discharges
- Detect bottlenecks
- Analyze effects of traffic signals, tolls, etc

(Ch. 9.1)

Least squares

Adaptation of data

Engine development, design of antennas or tyres, etc.

For each function evaluation a computationally expensive (time consuming) simulation may be needed

Maximize the volume of a cylinder

... while keeping, e.g., the surface area constant

Wind power generation

The energy content in the wind is $\propto v^3$ (in Ass 3a it is discretized and measured data is used)

(Ch. 9.1)

An overview of nonlinear optimization

General notation for nonlinear programs

$$\begin{array}{ll} \text{minimize }_{\mathbf{x} \in \mathbb{R}^n} & f(\mathbf{x}) \\ \text{subject to} & g_i(\mathbf{x}) \leq 0, \quad i \in \mathcal{L}, \\ & h_i(\mathbf{x}) = 0, \quad i \in \mathcal{E}. \end{array}$$

Some special cases

• Unconstrained problems $(\mathcal{L} = \mathcal{E} = \emptyset)$:

minimize $f(\mathbf{x})$ subject to $\mathbf{x} \in \mathbb{R}^n$

- Convex programming: f convex, g_i convex, $i \in \mathcal{L}$, h_i linear, $i \in \mathcal{E}$.
- Linear constraints: g_i , $i \in \mathcal{L}$, and h_i , $i \in \mathcal{E}$
 - Quadratic programming:
 - Linear programming:

$$f(\mathbf{x}) = \mathbf{c}^{\top}\mathbf{x} + \frac{1}{2}\mathbf{x}^{\top}\mathbf{Q}\mathbf{x}$$
$$f(\mathbf{x}) = \mathbf{c}^{\top}\mathbf{x}$$

Properties of nonlinear programs

- The mathematical properties of nonlinear optimization problems can be very different
- No algorithm exists that solves all nonlinear optimization problems
- An optimal solution does *not* have to be located at an extreme point
- Nonlinear programs can be unconstrained What if a *linear program* has no constraints?
- *f* may be differentiable or non-differentiable E.g., the Lagrangean dual objective function
- For convex problems: Algorithms (typically) converge to an optimal solution
- Nonlinear problems can have *local* optima that are *not global* optima

Consider the problem to minimize $f(\mathbf{x})$ subject to $\mathbf{x} \in S$

Possible extremal points are

- boundary points of $S = [x^1, x^7]$ (i.e., $\{x^1, x^7\}$)
- stationary points, where $f'(\mathbf{x}) = 0$ (i.e., $\{x^2, \dots, x^6\}$)
- discontinuities in f or f'

DRAW!

Boundary and stationary points

Boundary points

 $\overline{\mathbf{x}}$ is a *boundary* point to the feasible set

$$S = \{\mathbf{x} \in \mathbb{R}^n \mid g_i(\mathbf{x}) \leq 0, i \in \mathcal{L}\}$$

if $g_i(\overline{\mathbf{x}}) \leq 0$, $i \in \mathcal{L}$, and $g_i(\overline{\mathbf{x}}) = 0$ for at least one index $i \in \mathcal{L}$

Stationary points

 $\overline{\mathbf{x}}$ is a stationary point to f if $\nabla f(\overline{\mathbf{x}}) = \mathbf{0}^n$ (for n = 1: if $f'(\overline{\mathbf{x}}) = 0$)

(Ch. 10.0)

Local and global minima (maxima)

(Ch. 2.4)

Consider the nonlinear optimization problem to

minimize $f(\mathbf{x})$ subject to $\mathbf{x} \in S$

Local minimum

- *In words:* A solution is a *local* minimum if it is *feasible* and no other feasible solution in a sufficiently *small neighbourhood* of the solution at hand has a lower objective value
- Formally: $\overline{\mathbf{x}}$ is a local minimum if $\overline{\mathbf{x}} \in S$ and $\exists \varepsilon > 0$ such that $f(\overline{\mathbf{x}}) \leq f(\mathbf{x})$ for all $\mathbf{x} \in \{\mathbf{y} \in S : ||\mathbf{y} \overline{\mathbf{x}}|| \leq \varepsilon\}$ DRAW!!

Global minimum

- *In words:* A solution is a *global* minimum if it is *feasible* and no other feasible solution has a lower objective value
- Formally: $\overline{\mathbf{x}}$ is a global minimum if $\overline{\mathbf{x}} \in S$ and $f(\overline{\mathbf{x}}) \leq f(\mathbf{x})$ for all $\mathbf{x} \in S$

When is a local optimum also a global optimum? (Ch. 9.3)

The concept of convexity is essential

- Functions: convex (minimization), concave (maximization)
- Sets: convex (minimization and maximization)
- The minimization (maximization) of a convex (concave) function over a convex set is referred to as a convex optimization problem

Definition 9.5: Convex optimization problem

If f and g_i , $i \in \mathcal{L}$, are convex functions, then

minimize $f(\mathbf{x})$ subject to $g_i(\mathbf{x}) \leq 0, i \in \mathcal{L}$

is said to be a convex optimization problem

Theorem 9.1: Global optimum

Let \mathbf{x}^* be a *local* optimum of a *convex* optimization problem. Then \mathbf{x}^* is also a *global* optimum

Convex functions

A function f is convex on S if, for any $\mathbf{x}, \mathbf{y} \in S$ it holds that $f(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}) \le \alpha f(\mathbf{x}) + (1 - \alpha)f(\mathbf{y})$ for all $0 \le \alpha \le 1$

$$f(lpha \mathbf{x} + [1 - lpha] \mathbf{y}) < lpha f(\mathbf{x}) + (1 - lpha) f(\mathbf{y})$$
 for all $0 < lpha < 1$

Convex sets

A set S is convex if, for any $\mathbf{x}, \mathbf{y} \in S$ it holds that $\alpha \mathbf{x} + (1 - \alpha)\mathbf{y} \in S$ for all $0 \le \alpha \le 1$

The Karush-Kuhn-Tucker conditions: necessary conditions for optimality

Let $S := \{ \mathbf{x} \in \mathbb{R}^n \mid g_i(\mathbf{x}) \le 0, i \in \mathcal{L} \}$

- Assume that the following hold
 - the function $f : \mathbb{R}^n \mapsto \mathbb{R}$ is differentiable;
 - the functions $g_i : \mathbb{R}^n \mapsto \mathbb{R}$, $i \in \mathcal{L}$, are convex and differentiable;
 - there exists a point $\overline{\mathbf{x}} \in S$ such that $g_i(\overline{\mathbf{x}}) < 0$, $i \in \mathcal{L}$
- If x^{*} ∈ S is a local minimum of f over S, then there exists a vector μ ∈ ℝ^m (where m = |L|) such that

$$\nabla f(\mathbf{x}^*) + \sum_{i \in \mathcal{L}} \mu_i \nabla g_i(\mathbf{x}^*) = \mathbf{0}^n,$$

$$\mu_i g_i(\mathbf{x}^*) = 0, \quad i \in \mathcal{L},$$

$$\boldsymbol{\mu} \geq \mathbf{0}^m.$$

Geometry of the Karush-Kuhn-Tucker conditions

Figur: Geometric interpretation of the Karush-Kuhn-Tucker conditions. At a local minimum, the negative gradient of the objective function can be expressed as a non-negative linear combination of the gradients of the active constraints at this point

The Karush-Kuhn-Tucker conditions: sufficient for optimality under convexity

Assume that the functions $f, g_i : \mathbb{R}^n \mapsto \mathbb{R}, i \in \mathcal{L}$, are convex and differentiable, and let $S = \{ \mathbf{x} \in \mathbb{R}^n \mid g_i(\mathbf{x}) \leq 0, i \in \mathcal{L} \}$

If the conditions (where $m = |\mathcal{L}|$)

$$abla f(\mathbf{x}^*) + \sum_{i \in \mathcal{L}} \mu_i \nabla g_i(\mathbf{x}^*) = \mathbf{0}^n,$$

 $\mu_i g_i(\mathbf{x}^*) = \mathbf{0}, \quad i \in \mathcal{L},$

hold, then $\mathbf{x}^* \in S$ is a global minimum of f over S.

• The Karush-Kuhn-Tucker conditions can also be stated for optimization problems with equality constraints

 $\mu > 0^m$

- For unconstrained optimization KKT reads: $\nabla f(\mathbf{x}^*) = \mathbf{0}$
- For a quadratic program KKT forms a system of linear (in)equalities plus the complementarity constraints

The optimality conditions can be used to...

- verify an (local) optimal solution
- solve certain special cases of nonlinear programs (e.g. quadratic programs)
- algorithm construction
- derive properties of a solution to a non-linear program

Example

$$\begin{array}{rll} \text{minimize} & f(\mathbf{x}) := 2x_1^2 + 2x_1x_2 + x_2^2 - 10x_1 - 10x_2\\ \text{subject to} & x_1^2 + x_2^2 & \leq & 5\\ & & 3x_1 + x_2 & \leq & 6 \end{array}$$

Is $\mathbf{x}^0 = (1,2)^ op$ a Karush-Kuhn-Tucker point?

• Is it an optimal solution?

• Derive:
$$\nabla f(\mathbf{x}) = (4x_1 + 2x_2 - 10, 2x_1 + 2x_2 - 10)^\top$$
,
 $\nabla g_1(\mathbf{x}) = (2x_1, 2x_2)^\top$, and $\nabla g_2(\mathbf{x}) = (3, 1)^\top$

$$\begin{array}{c} 4x_1^0 + 2x_2^0 - 10 + 2x_1^0\mu_1 + 3\mu_2 = 0\\ 2x_1^0 + 2x_2^0 - 10 + 2x_2^0\mu_1 + \mu_2 = 0\\ \mu_1[(x_1^0)^2 + (x_2^0)^2 - 5] = \mu_2(3x_1^0 + x_2^0 - 6) = 0\\ \mu_1, \mu_2 \ge 0 \end{array} \iff \begin{array}{c} 2\mu_1 + 3\mu_2 = 2\\ 4\mu_1 + \mu_2 = 4\\ 0\mu_1 = -\mu_2 = 0\\ \mu_1, \mu_2 \ge 0 \end{array}$$

$$\Rightarrow \mu_2 = 0 \quad \Rightarrow \quad \mu_1 = 1 \ge 0$$

OK, the Karush-Kuhn-Tucker conditions hold

Is the solution optimal? Check convexity!

•
$$\nabla^2 f(\mathbf{x}) = \begin{pmatrix} 4 & 2 \\ 2 & 2 \end{pmatrix}, \nabla^2 g_1(\mathbf{x}) = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}, \nabla^2 g_2(\mathbf{x}) = \mathbf{0}^{2 \times 2}$$

 $\Rightarrow f, g_1, \text{ and } g_2 \text{ are convex}$

 $\Rightarrow \mathbf{x}^0 = (1,2)^\top$ is an optimal solution and $f(\mathbf{x}^0) = -20$

General iterative search method for unconstrained optimization

(Ch. 2.5.1)

- **①** Choose a starting solution, $\mathbf{x}^0 \in \mathbb{R}^n$. Let k = 0
- **2** Determine a search direction \mathbf{d}^k
- **③** If a termination criterion is fulfilled \Rightarrow Stop!
- Determine a step length, t_k , by solving:

minimize_{$$t\geq 0$$} $\varphi(t) := f(\mathbf{x}^k + t \cdot \mathbf{d}^k)$

- **5** New iteration point, $\mathbf{x}^{k+1} = \mathbf{x}^k + t_k \cdot \mathbf{d}^k$
- Let k := k + 1 and return to step 2

How choose search directions \mathbf{d}^k , step lengths t_k , and termination criteria?

Improving search directions

Goal: $f(\mathbf{x}^{k+1}) < f(\mathbf{x}^k)$ (minimization)

• How does f change locally in a direction \mathbf{d}^k at \mathbf{x}^k ?

• Taylor expansion (Ch. 9.2):

$$f(\mathbf{x}^k + t\mathbf{d}^k) = f(\mathbf{x}^k) + t\nabla f(\mathbf{x}^k)^\top \mathbf{d}^k + \mathcal{O}(t^2)$$

• For sufficiently small t > 0: $f(\mathbf{x}^k + t\mathbf{d}^k) < f(\mathbf{x}^k) \implies \nabla f(\mathbf{x}^k)^\top \mathbf{d}^k < 0$

\Rightarrow

Definition

If $\nabla f(\mathbf{x}^k)^{\top} \mathbf{d}^k < 0$ then \mathbf{d}^k is a descent direction for f at \mathbf{x}^k If $\nabla f(\mathbf{x}^k)^{\top} \mathbf{d}^k > 0$ then \mathbf{d}^k is an ascent direction for f at \mathbf{x}^k

We wish to minimize (maximize) f over \mathbb{R}^n

 \Rightarrow Choose \mathbf{d}^k as a descent (an ascent) direction from \mathbf{x}^k

(Ch. 10)

An improving step

Figur: At \mathbf{x}^k , the descent direction \mathbf{d}^k is generated. A step t_k is taken in this direction, producing \mathbf{x}^{k+1} . At this point, a new descent direction \mathbf{d}^{k+1} is generated, etc

- **①** Choose a starting solution, $\mathbf{x}^0 \in \mathbb{R}^n$. Let k = 0
- **2** Determine a search direction \mathbf{d}^k
- **③** If a termination criterion is fulfilled \Rightarrow Stop!
- Determine a step length, t_k , by solving:

minimize_{$$t\geq 0$$} $\varphi(t) := f(\mathbf{x}^k + t \cdot \mathbf{d}^k)$

3 New iteration point,
$$\mathbf{x}^{k+1} = \mathbf{x}^k + t_k \cdot \mathbf{d}^k$$

• Let k := k + 1 and return to step 2

Step length—line search (minimization)

(Ch. 10.4)

- Solve $\min_{t\geq 0} \varphi(t) := f(\mathbf{x}^k + t \cdot \mathbf{d}^k)$ where \mathbf{d}^k is a descent direction from \mathbf{x}^k
- A minimization problem in one variable \Rightarrow Solution t_k
- Analytic solution: $\varphi'(t_k) = 0$ (seldom possible to derive)

Numerical solution methods

- The golden section method (reduce the interval of uncertainty)
- The bi-section method (reduce the interval of uncertainty)
- Newton-Raphson's method
- Armijo's method

In practice

Do not solve exactly, but to a sufficient improvement of the function value: $f(\mathbf{x}^k + t_k \mathbf{d}^k) \le f(\mathbf{x}^k) - \varepsilon$ for some $\varepsilon > 0$

Line search

Figur: A line search in a descent direction. t_k solves $\min_{t\geq 0} \varphi(t) := f(\mathbf{x}^k + t \cdot \mathbf{d}^k)$

General iterative search method for unconstrained optimization

- **①** Choose a starting solution, $\mathbf{x}^0 \in \mathbb{R}^n$. Let k = 0
- **2** Determine a search direction \mathbf{d}^k
- **3** If a termination criterion is fulfilled \Rightarrow Stop!
- Determine a step length, t_k , by solving:

minimize_{$$t\geq 0$$} $\varphi(t) := f(\mathbf{x}^k + t \cdot \mathbf{d}^k)$

- Solution New iteration point, $\mathbf{x}^{k+1} = \mathbf{x}^k + t_k \cdot \mathbf{d}^k$
- Let k := k + 1 and return to step 2

Needed since $\nabla f(\mathbf{x}^k) = \mathbf{0}$ will never be fulfilled exactly

Typical choices (
$$arepsilon_j > 0$$
, $j = 1, \dots, 4$)

(a)
$$\|\nabla f(\mathbf{x}^k)\| < \varepsilon_1$$

(b) $|f(\mathbf{x}^{k+1}) - f(\mathbf{x}^k)| < \varepsilon_2$
(c) $\|\mathbf{x}^{k+1} - \mathbf{x}^k\| < \varepsilon_3$
(d) $t_k < \varepsilon_4$

The criteria (a)-(d) are often combined

The search method only guarantees a stationary solution, whose properties are determined by the properties of f (convexity, ...)

Constrained optimization: Penalty methods

Consider both inequality and equality constraints

$$egin{aligned} & ext{ninimize}_{\mathbf{x} \in \mathbb{R}^n} & f(\mathbf{x}) \ & ext{subject to} & g_i(\mathbf{x}) \leq 0, \quad i \in \mathcal{L}, \ & h_i(\mathbf{x}) = 0, \quad i \in \mathcal{E}. \end{aligned}$$

Drop the constraints and add terms in the objective that *penalize infeasibile solutions*

minimize_{$$\mathbf{x} \in \mathbb{R}^n$$} $F_{\mu}(\mathbf{x}) := f(\mathbf{x}) + \mu \sum_{i \in \mathcal{L} \cup \mathcal{E}} \alpha_i(\mathbf{x})$ (2)

where
$$\mu > 0$$
 and $\alpha_i(\mathbf{x}) = \begin{cases} = 0 & \text{if } \mathbf{x} \text{ satisfies constraint } i \\ > 0 & \text{otherwise} \end{cases}$

Common penalty functions (which of these are differentiable?)

$$i \in \mathcal{L}: \qquad \alpha_i(\mathbf{x}) = \max\{0, g_i(\mathbf{x})\} \text{ or } \alpha_i(\mathbf{x}) = (\max\{0, g_i(\mathbf{x})\})^2$$
$$i \in \mathcal{E}: \qquad \alpha_i(\mathbf{x}) = |h_i(\mathbf{x})| \text{ or } \alpha_i(\mathbf{x}) = |h_i(\mathbf{x})|^2$$

Squared and non-squared penalty functions

minimize
$$(x^2 - 20 \ln x)$$
 subject to $x \ge 5$

Figur: Squared and non-squared penalty function. g_i differentiable \implies squared penalty function differentiable

Squared penalty functions

- In practice: Start with a low value of $\mu > 0$ and increase the value as the computations proceed
- Example: minimize $(x^2 20 \ln x)$ subject to $x \ge 5$ (*)

 $\Rightarrow \left| \text{minimize } \left(x^2 - 20 \ln x + \mu (\max\{0, 5 - x\})^2 \right) \right| \qquad (**)$

Figur: Squared penalty function: $\not\exists \mu < \infty$ such that an optimal solution for (**) is optimal (feasible) for (*)

Non-squared penalty functions

- In practice: Start with a low value of $\mu > 0$ and increase the value as the computations proceed
- Example: minimize $(x^2 20 \ln x)$ subject to $x \ge 5$ (+)

 $\Rightarrow \left| \text{minimize} \left(x^2 - 20 \ln x + \mu \max\{0, 5 - x\} \right) \right| \qquad (++)$

Figur: Non-squared penalty function: For $\mu \ge 6$ the optimal solution for (++) is optimal (and feasible) for (+)

Constrained optimization: Barrier methods

Consider only inequality constraints minimize $_{\mathbf{x}\in\mathbb{R}^n}$ $f(\mathbf{x})$ subject to $g_i(\mathbf{x}) \leq 0, i \in \mathcal{L}$ (3)

• Drop the constraints and add terms in the objective that prevents from approaching the boundary of the feasible set

minimize_{$$\mathbf{x}\in\mathbb{R}^n$$} $F_{\mu}(\mathbf{x}) := f(\mathbf{x}) + \mu \sum_{i\in\mathcal{L}} \alpha_i(\mathbf{x})$ (4)

where $\mu > 0$ and $\alpha_i(\mathbf{x}) \to +\infty$ as $g_i(\mathbf{x}) \to 0$ (as constraint *i* approaches being active)

Common barrier functions

$$\alpha_i(\mathbf{x}) = -\ln[-g_i(\mathbf{x})]$$
 or $\alpha_i(\mathbf{x}) = \frac{-1}{g_i(\mathbf{x})}$

Logarithmic barrier functions

- Choose $\mu > 0$ and decrease it as the computations proceed
- Example: minimize $(x^2 20 \ln x)$ subject to $x \ge 5$

$$\Rightarrow \text{ minimize }_{x>5} (x^2 - 20 \ln x - \mu \ln(x - 5))$$

Fractional barrier functions

- Choose $\mu > 0$ and decrease it as the computations proceed
- **Example:** minimize $(x^2 20 \ln x)$ subject to $x \ge 5$

$$\Rightarrow \text{ minimize }_{x>5} \left(x^2 - 20 \ln x + \frac{\mu}{x-5} \right)$$

Summary of the theoretical content of the course ...

... which may appear at the oral exam:

- Mathematical modelling of optimization problems; graphic solution
- Linear programming: BFSs; the simplex method; degeneracy; multiple optima; unbounded solution; infeasibility; starting solutions; LP duality; post-optimal and sensitivity analysis
- *Discrete and combinatorial optimization*: models of specific ILP problems; mathematical properties; complexity; algorithms; local/global optima; neighbourhoods; heuristics
- Network flows: Shortest paths; dynamic programming; LP models of network flows; maximum flows; minimum cost network flows; unimodularity; integrality property
- Multi-objective optimization: Pareto optimality; (non-)convexity; solution methods; objective space representation;
- *Non-linear optimization*: convexity; local/global optimality; mathematical properties; solution methods