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Evaluation Polyhedra Reformulation BFS

Course evaluation

The first meeting will be held on XXXday, March XX at X.XX

The second meeting will be held during week 17 (April, 23–27)

Notes will be published in the course’s PingPong event

Any voluntary representative from GU is also welcome!
Anyone?

Contact any student representative to present your opinion:

Gagandeep Bhatia (MPCAS)

Marielle Cederlund (TKTEM)

Konstantinos Konstantinou (MPENM)

Emma Nirvin (TKTEM)

Samuel Sjöström (TKTEM)
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Linear optimization models = linear programs (LP)

A linear optimization model: cj , aij , bi : constant parameters

minimize z =
n∑

j=1

cjxj

subject to
n∑

j=1

aijxj ≤ bi , i = 1, . . . ,m

xj ≥ 0, j = 1, . . . , n

In vector notation: c, x ∈ R
n, b ∈ R

m, A ∈ R
m×n

min z = c⊤x
s.t. Ax ≤ b

x ≥ 0n
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A polyhedron

The feasible region of a linear optimization model is defined as the
intersection of halfspaces in R

n defined by its constraints.

The feasible region is a polyhedron, denoted X ⊂ R
n
+

X :=

{

x ∈ R
n
+

∣
∣
∣
∣
∣

n∑

j=1

aijxj ≤ bi , i = 1, . . . ,m

}

≡
{
x ≥ 0n

∣
∣Ax ≤ b

}

[Draw on the board]
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Convex combinations (Ch. 4.1)

Definition (Convex combination (Def. 4.1))

A convex combination of the points xp ∈ R
n, p = 1, . . . ,P , is any

point x ∈ R
n that can be expressed as

x =
P∑

p=1

λpx
p

where the following constraints hold:

P∑

p=1

λp = 1; λp ≥ 0, p = 1, . . . ,P

The variables λp are called convexity weights

[Draw on the board]
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Convex sets (Ch. 2.4)

Definition (Convex set (Def. 2.5))

A set X ∈ R
n is a convex set if, for any two points x1 ∈ X and

x2 ∈ X , and any λ ∈ [0, 1], it holds that

x := λx1 + (1− λ)x2 ∈ X

[Draw on the board]
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Linear programs and convex polyhedra (Ch. 4.1)

Let x := λx1 + (1− λ)x2, where x1 and x2 are feasible, i.e.,
x1 ≥ 0n, x2 ≥ 0n, Ax1 ≤ b, and Ax2 ≤ b.

The intersection of linear constraints forms a convex set

The feasible region of a linear program is a convex set, since for any two
feasible points x1 and x2 and any λ ∈ [0, 1] it holds that

n∑

j=1

aijxj =
n∑

j=1

aij

(

λx1j + (1 − λ)x2j

)

= λ

n∑

j=1

aijx
1
j + (1− λ)

n∑

j=1

aijx
2
j

≤ λbi + (1− λ)bi

= bi , i = 1, . . . ,m

and

xj = λx1j + (1− λ)x2j ≥ 0, j = 1, . . . , n

[Draw on the board]
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Extreme points (Ch. 4.1)

Definition (Extreme point (Def. 4.2))

The point xk is an extreme point of the polyhedron X if xk ∈ X
and it is not possible to express xk as a strict convex combination
of two distinct points in X .

I.e: Given x1 ∈ X , x2 ∈ X , and 0 < λ < 1, it holds that
xk = λx1 + (1− λ)x2 only if xk = x1 = x2 hold.

[Draw on the board]
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Optimal solution and extreme points (Ch. 4.1)

Theorem (Optimal solution in an extreme point (Th. 4.2))

Assume that the feasible region X = {x ≥ 0n | Ax ≤ b} is
non-empty and bounded.
Then, the minimum value of the objective c⊤x is attained at
(at least) one extreme point xk of X .

[Draw on the board]
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Proof of Theorem 4.2

Assume the opposite, that there is a non-extreme point x̃ ∈ X with
a lower objective value than any of the extreme points, i.e.,

c⊤x̃ < c⊤xk for all extreme points xk of X . (1)

Since the polyhedron X is a convex set, the point x̃ can be
expressed as a convex combination of the extreme points of X , i.e.,

x̃ =
∑p

k=1 λkx
k ; (2)

∑p
k=1 λk = 1 (3)

λk ≥ 0, k = 1, . . . , p (4)

where p is the number of extreme points. Then, it must hold that

c⊤x̃ =
︸︷︷︸

(2)

c⊤
p

∑

k=1

λkx
k =

p
∑

k=1

λkc
⊤xk >

︸︷︷︸

(1),(4)

p
∑

k=1

λkc
⊤x̃ = c⊤x̃

p
∑

k=1

λk =
︸︷︷︸

(3)

c⊤x̃

which is a contradiction.
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A general linear program – notation

Definition (Notation of linear programs)

minimize or maximize c1x1 + . . .+ cnxn

subject to ai1x1 + . . .+ ainxn







≤
=
≥






bi , i = 1, . . . ,m

xj







≤ 0
unrestricted in sign
≥ 0






, j = 1, . . . , n

The blue notation corresponds to the standard form
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The standard form of the simplex method for linear
programs (Ch. 4.2)

Every linear program can be reformulated such that:

all constraints are expressed as equalities with
non-negative right hand sides
all variables involved are restricted to be non-negative

Referred to as the standard form

These requirements streamline the calculations of the
simplex method

Software solvers (e.g., Cplex, GLPK, Clp, Gurobi, SCIP)
handle also inequality constraints and unrestricted variables –
the reformulations are made automatically
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The simplex method—standard form reformulations

Slack variables:






n∑

j=1

aijxj ≤ bi , ∀i

xj ≥ 0, ∀j




 ⇐⇒








n∑

j=1

aijxj +si = bi , ∀i

xj ≥ 0, ∀j
si ≥ 0, ∀i








The lego example:





2x1 +x2 ≤ 6
2x1 +2x2 ≤ 8

x1, x2 ≥ 0



 ⇐⇒





2x1 +x2 +s1 = 6
2x1 +2x2 +s2 = 8

x1, x2, s1, s2 ≥ 0





s1 and s2 are called slack variables—they ”fill out” the
(positive) distances between the left and right hand sides
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The simplex method—standard form reformulations

Surplus variables:






n∑

j=1

aijxj ≥ bi , ∀i

xj ≥ 0, ∀j




 ⇐⇒








n∑

j=1

aijxj −si = bi , ∀i

xj ≥ 0, ∀j
si ≥ 0, ∀i








Surplus variable s3 (another instance):

[
x1 + x2 ≥ 800

x1, x2 ≥ 0

]

⇐⇒

[
x1 + x2 − s3 = 800

x1, x2, s3 ≥ 0

]
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The simplex method—standard form reformulations

Suppose that b < 0:






n∑

j=1

ajxj ≤ b

xj ≥ 0, ∀j




 ⇐⇒






n∑

j=1

(−aj)xj ≥ −b

xj ≥ 0, ∀j




 ⇐⇒








−

n∑

j=1

ajxj −s = −b

xj ≥ 0, ∀j
s ≥ 0








Non-negative right hand side:

[
x1 − x2 ≤ −23
x1, x2 ≥ 0

]

⇐⇒

[
−x1 + x2 ≥ 23

x1, x2 ≥ 0

]

⇐⇒

[
−x1 + x2 − s4 = 23

x1, x2, s4 ≥ 0

]
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The simplex method—standard form reformulations

Suppose that some of the variables are unconstrained (here: k < n).
Replace xj with x1j − x2j for the corresponding indices:






n∑

j=1

ajxj ≤ b

xj ≥ 0, j = 1, . . . , k




⇐⇒










k∑

j=1

ajxj +
n∑

j=k+1

aj(x
1
j − x2j ) + s = b

xj ≥ 0, j = 1, . . . , k ,
x1j ≥ 0, x2j ≥ 0, j = k + 1, . . . , n

s ≥ 0










Sign-restricted (non-negative) variables:

[
x1 + x2 ≤ 10

x1 ≥ 0

]

⇐⇒

[
x1 + x12 − x22 ≤ 10

x1, x
1
2 , x

2
2 ≥ 0

]

⇐⇒

[
x1 + x12 − x22 + s5 = 10

x1, x
1
2 , x

2
2 , s5 ≥ 0

]
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Basic solutions (Ch. 4.3)

Consider m equations with n variables, where m ≤ n

Set n −m variables to zero and solve (if possible) the
remaining (m ×m) system of equations

If the solution is unique, it is called a basic solution

Definition (Def. 4.3)

A basic solution to the m × n system of equations Ax = b is
obtained if n −m of the variables are set to 0 and the remaining
variables get their unique values from the solution to the remaining
m ×m system of equations.

The variables that are set to 0 are called nonbasic variables and
the remaining m variables are called basic variables.
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Basic feasible solutions (BFS) (Ch. 4.3)

A basic solution x corresponds to the intersection of m
hyperplanes in R

m

It is feasible if x ≥ 0
It is infeasible if x 6≥ 0

Each extreme point of the feasible set is an intersection of m
hyperplanes such that all variable values are ≥ 0

Basic feasible solution ⇐⇒ extreme point of the feasible set

a11x1 + . . . + a1nxn = b1 x1 ≥ 0
a21x1 + . . . + a2nxn = b2 x2 ≥ 0

· · · · · ·
am1x1 + . . .+ amnxn = bm xn ≥ 0
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Basic feasible solutions – algebraic descriptions

Assume that m < n and that bi ≥ 0, i = 1, . . . ,m, and let

c =






c1
...
cn




, A =






a11 . . . a1n
...

. . .
...

am1 . . . amn




, b =






b1
...
bm




, x =






x1
...
xn




.

Consider the linear program to

minimize
x

z = c⊤x

subject to Ax = b

x ≥ 0

Partition x into m basic variables xB and n −m non-basic
variables xN , such that x = (xB , xN).

Analogously, let c = (cB , cN) and A = (AB ,AN) ≡ (B,N)

The matrix B ∈ R
m×m with inverse B−1 (if it exists)
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Basic feasible solutions – algebraic descriptions (Ch. 4.8)

Rewrite the linear program equivalently as

minimize z = c⊤BxB + c⊤NxN (5a)

subject to BxB +NxN = b (5b)

xB ≥ 0m, xN ≥ 0n−m (5c)

Multiply the system of equations (5b) by B−1 from the left:

B−1BxB + B−1NxN = xB + B−1NxN = B−1b

=⇒ xB = B−1b− B−1NxN = B−1(b−NxN) (6)

Replace xB in (5a) by the expression in (6):

c⊤BxB+c⊤NxN = c⊤BB
−1(b−NxN)+c⊤NxN = c⊤BB

−1b+(c⊤N−c⊤BB
−1N)xN

⇒ minimize z = c⊤BB
−1b+ (c⊤N − c⊤BB

−1N)xN

subject to B−1b− B−1NxN ≥ 0m, xN ≥ 0n−m
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Basic feasible solutions – algebraic descriptions

The rewritten program

minimize z = c⊤BB
−1b+ (c⊤N − c⊤BB

−1N)xN (7a)

subject to B−1b− B−1NxN ≥ 0m (7b)

xN ≥ 0n−m (7c)

At the basic solution defined by B ⊂ {1, . . . , n}:

Each non-basic variable takes the value 0, i.e., xN = 0

The basic variables take the values
xB = B−1b− B−1NxN = B−1b

The value of the objective function is z = c⊤BB
−1b

The basic solution is feasible if B−1b ≥ 0m
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Basic feasible solutions, example

Constraints:

x1 ≤ 23 (1)
0.067x1 + x2 ≤ 6 (2)

3x1 + 8x2 ≤ 85 (3)
x1, x2 ≥ 0

Add slack variables:

x1 +s1 = 23 (1)
0.067x1 +x2 +s2 = 6 (2)

3x1 +8x2 +s3 = 85 (3)
x1, x2, s1, s2, s3 ≥ 0

x1

x2

1

1

5

5

10

10 15 20 25

n = 5

m = 3
(1)

(2)

(3)
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Basic and non-basic variables and solutions

basic basic solution non-basic point feasible?
variables variables (0, 0)

s1, s2, s3 23 6 85 x1, x2 A yes
s1, s2, x1 −5 1

3
4 1
9

28 1
3

s3, x2 H no
s1, s2, x2 23 −4 5

8
10 5

8
x1, s3 C no

s1, x1, s3 −67 90 −185 s2, x2 I no
s1, x2, s3 23 6 37 s2, x1 B yes
x1, s2, s3 23 4 7

15
16 s1, x2 G yes

x2, s2, s3 - - - s1, x1 - -
x1, x2, s1 15 5 8 s2, s3 D yes
x1, x2, s2 23 2 2 7

15
s1, s3 F yes

x1, x2, s3 23 4 7
15

−19 11
15

s1, s2 E no

x1

x2

1

1

5

5

10

10 15 20 25

A

B

C

D
E

F

G H
I

(1)

(2)

(3)
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Basic feasible solutions correspond to solutions to the
system of equations that fulfill non-negativity

x1

x2

1

1

5

5

10

10 15 20 25
A

B D

F

G

(1)

(2)

(3) x1 +s1 = 23
0.067x1 +x2 +s2 = 6

3x1 +8x2 +s3 = 85

A: x1 = x2 = 0 ⇒




s1 = 23
s2 = 6

s3 = 85





B: x1 = s2 = 0 ⇒




s1 = 23
x2 = 6

8x2 +s3 = 85





D: s3 = s2 = 0 ⇒




x1 +s1 = 23
0.067x1 +x2 = 6

3x1 +8x2 = 85





F: s3 = s1 = 0 ⇒




x1 = 23
0.067x1 +x2 +s2 = 6

3x1 +8x2 = 85





G: x2 = s1 = 0 ⇒




x1 = 23
0.067x1 +s2 = 6

3x1 +s3 = 85
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Basic infeasible solutions corresp. to solutions to the
system of equations with one or more variables < 0

x1

x2

1

1

5

5

10

10 15 20 25

C

E

H
I

(1)

(2)

(3) x1 +s1 = 23
0.067x1 +x2 +s2 = 6

3x1 +8x2 +s3 = 85

H: x2 = s3 = 0 ⇒




x1 +s1 = 23
0.067x1 +s2 = 6

3x1 = 85





C: x1 = s3 = 0 ⇒




s1 = 23
x2 +s2 = 6

8x2 = 85





I: s2 = x2 = 0 ⇒




x1 +s1 = 23
0.067x1 = 6

3x1 +s3 = 85





-: s1 = x1 = 0 ⇒




0 = 23
x2 +s2 = 6

8x2 +s3 = 85





E: s1 = s2 = 0 ⇒




x1 = 23
0.067x1 +x2 = 6

3x1 +8x2 +s3 = 85
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