MVE165/MMG631 Linear and integer optimization with applications Lecture 5 Linear programming duality

Ann-Brith Strömberg

2018-04-11

(Ch. 6.1)

A linear program wit	h optir	mal value	e <i>z</i> *		
$z^* = \max z :=$	$20x_1$	$+18x_{2}$			weights
subject to	$7x_1$	$+10x_{2}$	\leq 3600	(1)	<i>v</i> ₁
	$16x_1$	$+12x_{2}$	\leq 5400	(2)	<i>v</i> ₂
		x_1, x_2	\geq 0		

[DRAW GRAPH]

• What is the largest possible value of z (i.e., z^*)?

Compute upper estimates of z^* , e.g.: • Multiply (1) by 3: $\Rightarrow 21x_1 + 30x_2 \le 10800$ $\Rightarrow z^* \le 10800$ • Multiply (2) by 1.5: $\Rightarrow 24x_1 + 18x_2 \le 8100$ $\Rightarrow z^* \le 8100$ • Combine: $0.6 \times (1) + 1 \times (2)$: $\Rightarrow 20.2x_1 + 18x_2 \le 7560$ $\Rightarrow z^* \le 7560$

(Ch.	6.1
<u> </u>		· · · · · ·

A linear program with optimal value z^*						
maximize	<i>z</i> :=	20 <i>x</i> ₁	$+18x_{2}$			weights
subject to		$7x_1$	$+10x_{2}$	\leq 3600	(1)	<i>v</i> ₁
		16 <i>x</i> ₁	$+12x_{2}$	\leq 5400	(2)	<i>v</i> ₂
			x_1, x_2	\geq 0		

[Draw graph]

- Do better than guess—compute optimal weights!
- Value of estimate: $w = 3600v_1 + 5400v_2 \rightarrow \min$

Constraints on the weights

$$\begin{array}{rrr} 7v_1 + 16v_2 & \geq 20 \\ 10v_1 + 12v_2 & \geq 18 \\ v_1, v_2 & \geq 0 \end{array}$$

The best (lowest) possible upper estimate of z^*						
minimize	w :=	3600 <i>v</i> 1	+	5400 <i>v</i> ₂		
subject to		7 <i>v</i> 1	+	16 <i>v</i> 2	≥ 20	
		$10v_{1}$	+	12 <i>v</i> ₂	\geq 18	
				v_1, v_2	\geq 0	

• A linear program!

[Draw graph!!]

(Ch. 6.1)

• It is called the *linear programming dual* of the original linear program

Consider the lego probl	em							
maximize	Ζ	=	$1600x_1$	+	1000 <i>x</i> ₂			
subject to			$2x_1$	+	<i>x</i> ₂	\leq	6	
			$2x_1$	+	$2x_2$	\leq	8	
					x_1, x_2	\geq	0	

- Option: Sell bricks instead of making furniture
- $v_1(v_2) = \text{price of a large (small) brick}$
- The market wishes to *minimize the payment*: min $6v_1 + 8v_2$

Sell only if prices are high enough

- $2v_1 + 2v_2 \ge 1600$
- $v_1 + 2v_2 \ge 1000$
- $v_1, v_2 \ge 0$

- otherwise better to make tables
- otherwise better to make chairs
 - don't sell at a negative price

A general linear program on "standard form"

A linear program with *n* non-negative variables, *m* equality constraints (m < n), and non-negative right-hand-sides

maximize
$$z = \sum_{j=1}^{n} c_j x_j$$
,
subject to $\sum_{j=1}^{n} a_{ij} x_j = b_i$, $i = 1, \dots, m$,
 $x_j \ge 0$, $j = 1, \dots, n$,

$$egin{aligned} x_j \in \mathbb{R}, & j = 1, \dots, n, \ a_{ij} \in \mathbb{R}, & i = 1, \dots, m, \ j = 1, \dots, n, \ b_i \geq 0, & i = 1, \dots, m, \ c_j \in \mathbb{R}, & j = 1, \dots, n. \end{aligned}$$

Or, on matrix formwheremaximize $z = c^T x$,subject toAx = b, $x \ge 0^n$, $b \in \mathbb{R}^m_+$, $c \in \mathbb{R}^n$.

Linear programming duality

To each primal	linear program	corresponds a dual li	near program
(Primal)		(Dual)	
minimize	$z = \mathbf{c}^{\mathrm{T}} \mathbf{x}$	maximize	$w = \mathbf{b}^{\mathrm{\scriptscriptstyle T}} \mathbf{y}$
subject to	$\mathbf{A}\mathbf{x} = \mathbf{b}$	subject to	$\mathbf{A}^{\mathrm{T}}\mathbf{y} \leq \mathbf{c}$
	${f x} \geq {f 0}^n$		

The component forms of the primal and dual programs					
(Primal)	(Dual)				
min $z = \sum_{j=1}^{n} c_j x_j$ s.t. $\sum_{i=1}^{n} a_{ij} x_j = b_i$, $i = 1, \dots, m$	$\max w = \sum_{i=1}^{m} b_i y_i$ s.t. $\sum_{i=1}^{m} a_{ij} y_i \le c_j,$				
$x_j \ge 0, j = 1, \ldots, n$	$j=1,\ldots,n$				

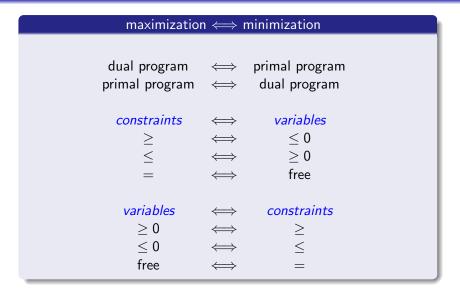
A primal linear program

minimize	z =	$2x_1$	$+3x_{2}$		weights/duals
subject to		$3x_1$	$+2x_{2}$	= 14	<i>y</i> 1
		$2x_1$	$-4x_{2}$	<u>≥</u> 2	<i>y</i> 2
		4 <i>x</i> ₁	$+3x_{2}$	<u>≤</u> 19	<i>y</i> 3
			x_1, x_2	\geq 0	

The corresponding dual linear program

maximize	w =	$14y_{1}$	$+2y_{2}$	+19 <i>y</i> ₃		weights/primals
subject to		3 <i>y</i> 1	$+2y_{2}$	+4 <i>y</i> ₃	<u>≤</u> 2	<i>x</i> ₁
		$2y_1$	$-4y_{2}$	+3 <i>y</i> ₃	<u>≤</u> 3	<i>x</i> ₂
		y_1			free	
			<i>y</i> 2		\geq 0	
				<i>y</i> 3	\leq 0	J

(Ch. 6.2)



The dual of the dual of any linear program equals the primal

(Ch	62)
(Ch.	0.5

[Th. 6.1]

Primal			Dual		
minimize	$z = \mathbf{c}^{\mathrm{T}} \mathbf{x}$	(1a)	maximize	$w = \mathbf{b}^{\mathrm{T}}\mathbf{y}$	(2a)
subject to	$\mathbf{A}\mathbf{x} = \mathbf{b}$	(1b)	subject to	$\mathbf{A}^{\mathrm{T}}\mathbf{y} \leq \mathbf{c}$	(2b)
	$\mathbf{x} \geq 0^n$	(1c)			

Weak duality

Let \mathbf{x} be a feasible point in the primal (minimization) and \mathbf{y} be a feasible point in the dual (maximization). Then, it holds that

$$z = \mathbf{c}^{\mathrm{T}} \mathbf{x} \ge \mathbf{b}^{\mathrm{T}} \mathbf{y} = w$$

Proof: $z = \underbrace{\mathbf{c}^{\mathrm{T}} \mathbf{x}}_{(1a)} \underbrace{\geq}_{(2b), (1c)} \mathbf{y}^{\mathrm{T}} \mathbf{A} \mathbf{x} = \underbrace{\mathbf{y}^{\mathrm{T}} \mathbf{b}}_{(1b)} \underbrace{=}_{(2a)} w.$ In the course book, the primal is formulated with inequality constraints in (1b): adjust the dual and the proof for that case!

Primal		Dual
minimize	$z = \mathbf{c}^{\mathrm{T}} \mathbf{x}$	maximize $w = \mathbf{b}^{\mathrm{T}} \mathbf{y}$
subject to	$\mathbf{A}\mathbf{x} = \mathbf{b}$	subject to $\mathbf{A}^{ ext{ iny T}}\mathbf{y} \leq \mathbf{c}$
	$\mathbf{x} \geq 0^n$	

Corollary

If \bar{x} is feasible in the primal and \bar{y} is feasible in the dual, and it holds that

$$\mathbf{c}^{\mathrm{T}}\mathbf{\bar{x}} = \mathbf{b}^{\mathrm{T}}\mathbf{\bar{y}},$$

then $\bar{\mathbf{x}}$ is optimal in the primal and $\bar{\mathbf{y}}$ is optimal in the dual.

(Ch. 6.3)

[Th. 6.2]

Primal	Dual
minimize $z = \mathbf{c}^{\mathrm{T}} \mathbf{x}$	maximize $w = \mathbf{b}^{\mathrm{T}} \mathbf{y}$
subject to $\mathbf{A}\mathbf{x} = \mathbf{b}$	subject to $\mathbf{A}^{ op}\mathbf{y} \leq \mathbf{c}$
$\mathbf{x} \geq 0^n$	

Strong duality

[Th. 6.3]

(Ch. 6.3)

In a pair of primal and dual linear programs, if one of them has a bounded optimal solution $\hat{\mathbf{x}}$ (or $\hat{\mathbf{y}}$), so does the other, i.e., $\hat{\mathbf{y}}$ (or $\hat{\mathbf{x}}$), and their optimal values are equal, i.e. $\mathbf{c}^{\mathrm{T}}\hat{\mathbf{x}} = \mathbf{b}^{\mathrm{T}}\hat{\mathbf{y}}$.

Primal	Dual
minimize $z = \mathbf{c}^{\mathrm{T}} \mathbf{x}$	maximize $w = \mathbf{b}^{\mathrm{T}} \mathbf{y}$
subject to $\mathbf{A}\mathbf{x} = \mathbf{b}$	subject to $\mathbf{A}^{ ext{ iny T}}\mathbf{y} \leq \mathbf{c}$
$x \geq 0^n$	

Complementary slackness

[Th. 6.5; proof in the course book]

If \mathbf{x} is *optimal in the primal* and \mathbf{y} is *optimal in the dual*, then it holds that

$$\mathbf{x}^{\mathrm{T}}(\mathbf{c} - \mathbf{A}^{\mathrm{T}}\mathbf{y}) = \mathbf{y}^{\mathrm{T}}(\mathbf{b} - \mathbf{A}\mathbf{x}) = 0.$$

If **x** is *feasible in the primal*, **y** is *feasible in the dual*, and $\mathbf{x}^{\mathrm{T}}(\mathbf{c} - \mathbf{A}^{\mathrm{T}}\mathbf{y}) = \mathbf{y}^{\mathrm{T}}(\mathbf{b} - \mathbf{A}\mathbf{x}) = 0$, then **x** and **y** are optimal in their respective problems.

Duality properties, V

(Ch. 6.3)

[Th. 6.4]

Primal	imal Dual		
$z^* := \min z =$	nin $z = \mathbf{c}_B^{\mathrm{T}} \mathbf{x}_B + \mathbf{c}_N^{\mathrm{T}} \mathbf{x}_N$ $w^* := \max w = \mathbf{b}^{\mathrm{T}}$		$= \mathbf{b}^{\mathrm{T}} \mathbf{y}$
subject to	$\mathbf{B}\mathbf{x}_B + \mathbf{N}\mathbf{x}_N = \mathbf{b}$	subject to	$\mathbf{B}^{\mathrm{T}}\mathbf{y} \leq \mathbf{c}_{B}$
	$\mathbf{x}_B \geq 0^m, \mathbf{x}_N \geq 0^{n-m}$		$\mathbf{N}^{\mathrm{T}}\mathbf{y} \leq \mathbf{c}_{N}$

Duality theorem

Assume that $\mathbf{x}_B = \mathbf{B}^{-1}\mathbf{b}$ is an optimal basic (feasible) solution to the primal problem. Then $\mathbf{y}^T = \mathbf{c}_B^T \mathbf{B}^{-1}$ is an optimal solution to the dual problem and $z^* = w^*$.

Proof structure

[full proof in the course book]

- **()** $\mathbf{y}^{\mathrm{T}} = \mathbf{c}_{B}^{\mathrm{T}} \mathbf{B}^{-1}$ is feasible in the dual problem
- 2 The optimal objective values z^* and w^* are equal
- Follows from complementarity: (x_B, x_N) and y are feasible in the primal and dual respective problem and z* = w*

Relations between primal and dual optimal solutions

primal (dual) problem \Longleftrightarrow dual (primal) problem					
unique and non-degenerate solution	\Leftrightarrow	unique and non-degenerate solution			
unbounded solution	\implies	no feasible solutions			
no feasible solutions	\Rightarrow	unbounded solution <i>or</i> no feasible solutions			
degenerate solution	\iff	alternative solutions			

Exercises on linear programming duality

• Formulate and solve graphically the dual of:

minimize	z =	6 <i>x</i> 1	$+3x_{2}$	$+x_{3}$	
subject to		6 <i>x</i> ₁	$-3x_{2}$	$+x_{3}$	≥ 2
		$3x_1$	$+4x_{2}$	$+x_{3}$	\geq 5
			x_1, x_2, x_3		\geq 0

- Then find the optimal primal solution
- Verify that the dual of the dual equals the primal