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An “intuitive” derivation of duality, I (Ch. 6.1)

A linear program with optimal value z∗

z∗ = max z := 20x1 +18x2 weights
subject to 7x1 +10x2 ≤ 3600 (1) v1

16x1 +12x2 ≤ 5400 (2) v2
x1, x2 ≥ 0

[Draw graph]

What is the largest possible value of z (i.e., z∗)?

Compute upper estimates of z∗, e.g.:

Multiply (1) by 3:
⇒ 21x1 + 30x2 ≤ 10800 ⇒ z∗ ≤ 10800

Multiply (2) by 1.5:
⇒ 24x1 + 18x2 ≤ 8100 ⇒ z∗ ≤ 8100

Combine: 0.6×(1)+1×(2):
⇒ 20.2x1+18x2≤7560 ⇒ z∗ ≤ 7560
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An “intuitive” derivation of duality, II (Ch. 6.1)

A linear program with optimal value z∗

maximize z := 20x1 +18x2 weights
subject to 7x1 +10x2 ≤ 3600 (1) v1

16x1 +12x2 ≤ 5400 (2) v2
x1, x2 ≥ 0

[Draw graph]

Do better than guess—compute optimal weights!

Value of estimate: w = 3600v1 + 5400v2 → min

Constraints on the weights

7v1 + 16v2 ≥ 20
10v1 + 12v2 ≥ 18

v1, v2 ≥ 0
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An “intuitive” derivation of duality, III (Ch. 6.1)

The best (lowest) possible upper estimate of z∗

minimize w := 3600v1 + 5400v2
subject to 7v1 + 16v2 ≥ 20

10v1 + 12v2 ≥ 18
v1, v2 ≥ 0

A linear program! [Draw graph!!]

It is called the linear programming dual of the original linear
program
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The lego model – the market problem

Consider the lego problem

maximize z = 1600x1 + 1000x2
subject to 2x1 + x2 ≤ 6

2x1 + 2x2 ≤ 8
x1, x2 ≥ 0

Option: Sell bricks instead of making furniture

v1(v2) = price of a large (small) brick

The market wishes to minimize the payment: min 6v1 + 8v2

Sell only if prices are high enough

2v1 + 2v2 ≥ 1600 – otherwise better to make tables

v1 + 2v2 ≥ 1000 – otherwise better to make chairs

v1, v2 ≥ 0 – don’t sell at a negative price
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A general linear program on “standard form”

A linear program with n non-negative variables, m equality
constraints (m < n), and non-negative right-hand-sides

maximize z =

n∑

j=1

cjxj ,

subject to

n∑

j=1

aijxj = bi , i = 1, . . . ,m,

xj ≥ 0, j = 1, . . . , n,

where

xj ∈ R, j = 1, . . . , n,
aij ∈ R, i = 1, . . . ,m,

j = 1, . . . , n,
bi ≥ 0, i = 1, . . . ,m,
cj ∈ R, j = 1, . . . , n.

Or, on matrix form

maximize z = cTx,

subject to Ax = b,

x ≥ 0n,

where

x ∈ R
n,

A ∈

R
m×n,

b ∈ R
m
+,

c ∈ R
n.

Lecture 4 Linear and integer optimization with applications 6/16



Linear programming duality

To each primal linear program corresponds a dual linear program

(Primal)

minimize z = cTx

subject to Ax = b

x ≥ 0n

(Dual)

maximize w = bTy

subject to ATy ≤ c

The component forms of the primal and dual programs

(Primal)

min z =
n∑

j=1

cjxj

s.t.
n∑

j=1

aijxj = bi , i = 1, . . . ,m

xj ≥ 0, j = 1, . . . , n

(Dual)

max w =
m∑

i=1

biyi

s.t.
m∑

i=1

aijyi ≤ cj ,

j = 1, . . . , n
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An example of linear programming duality

A primal linear program

minimize z = 2x1 +3x2 weights/duals
subject to 3x1 +2x2 = 14 y1

2x1 −4x2 ≥ 2 y2
4x1 +3x2 ≤ 19 y3

x1, x2 ≥ 0

The corresponding dual linear program

maximize w = 14y1 +2y2 +19y3 weights/primals
subject to 3y1 +2y2 +4y3 ≤ 2 x1

2y1 −4y2 +3y3 ≤ 3 x2
y1 free

y2 ≥ 0
y3 ≤ 0
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Rules for constructing the dual program (Ch. 6.2)

maximization ⇐⇒ minimization

dual program ⇐⇒ primal program
primal program ⇐⇒ dual program

constraints ⇐⇒ variables

≥ ⇐⇒ ≤ 0
≤ ⇐⇒ ≥ 0
= ⇐⇒ free

variables ⇐⇒ constraints

≥ 0 ⇐⇒ ≥

≤ 0 ⇐⇒ ≤

free ⇐⇒ =

The dual of the dual of any linear program equals the primal
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Duality properties, I (Ch. 6.3)

Primal Dual

minimize z = cTx (1a)

subject to Ax = b (1b)

x ≥ 0n (1c)

maximize w = bTy (2a)

subject to ATy ≤ c (2b)

Weak duality [Th. 6.1]

Let x be a feasible point in the primal (minimization) and y be a
feasible point in the dual (maximization). Then, it holds that

z = cTx ≥ bTy = w

Proof: z =
︸︷︷︸

(1a)

cTx ≥
︸︷︷︸

(2b), (1c)

yTAx =
︸︷︷︸

(1b)

yTb =
︸︷︷︸

(2a)

w . �

In the course book, the primal is formulated with inequality
constraints in (1b): adjust the dual and the proof for that case!
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Duality properties, II (Ch. 6.3)

Primal Dual

minimize z = cTx

subject to Ax = b

x ≥ 0n

maximize w = bTy

subject to ATy ≤ c

Corollary [Th. 6.2]

If x̄ is feasible in the primal and ȳ is feasible in the dual, and it
holds that

cTx̄ = bTȳ,

then x̄ is optimal in the primal and ȳ is optimal in the dual.
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Duality properties, III (Ch. 6.3)

Primal Dual

minimize z = cTx

subject to Ax = b

x ≥ 0n

maximize w = bTy

subject to ATy ≤ c

Strong duality [Th. 6.3]

In a pair of primal and dual linear programs, if one of them has a
bounded optimal solution x̂ (or ŷ), so does the other, i.e., ŷ (or x̂),
and their optimal values are equal, i.e. cTx̂ = bTŷ.
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Duality properties, IV (Ch. 6.3)

Primal Dual

minimize z = cTx

subject to Ax = b

x ≥ 0n

maximize w = bTy

subject to ATy ≤ c

Complementary slackness [Th. 6.5; proof in the course book]

If x is optimal in the primal and y is optimal in the dual, then it
holds that

xT(c− ATy) = yT(b− Ax) = 0.

If x is feasible in the primal, y is feasible in the dual, and
xT(c− ATy) = yT(b−Ax) = 0, then

x and y are optimal in their respective problems.
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Duality properties, V (Ch. 6.3)

Primal Dual

z∗ := min z = cTBxB + cTNxN

subject to BxB +NxN = b

xB ≥ 0m, xN ≥ 0n−m

w∗ := max w = bTy

subject to BTy ≤ cB

NTy ≤ cN

Duality theorem [Th. 6.4]

Assume that xB = B−1b is an optimal basic (feasible) solution to
the primal problem. Then yT = cTBB

−1 is an optimal solution to
the dual problem and z∗ = w∗.

Proof structure [full proof in the course book]

1 yT = cTBB
−1 is feasible in the dual problem

2 The optimal objective values z∗ and w∗ are equal

3 Follows from complementarity: (xB , xN) and y are feasible in
the primal and dual respective problem and z∗ = w∗
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Relations between primal and dual optimal solutions

primal (dual) problem ⇐⇒ dual (primal) problem

unique and ⇐⇒ unique and
non-degenerate solution non-degenerate solution

unbounded solution =⇒ no feasible solutions

no feasible solutions =⇒ unbounded solution or

no feasible solutions

degenerate solution ⇐⇒ alternative solutions
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Homework

Exercises on linear programming duality

Formulate and solve graphically the dual of:

minimize z = 6x1 +3x2 +x3
subject to 6x1 −3x2 +x3 ≥ 2

3x1 +4x2 +x3 ≥ 5
x1, x2, x3 ≥ 0

Then find the optimal primal solution

Verify that the dual of the dual equals the primal
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