MVE165/MMG631

Linear and integer optimization with applications

Lecture 6

Linear programming: post-optimal and sensitivity

analysis

Ann-Brith Strömberg

2018-04-13

Derivation of the simplex method (review)

(Ch. 4.8)

- B = index set of basic var's, N = index set of non-basic var's
- $\Rightarrow |B| = m \text{ and } |N| = n m$
 - Partition matrix/vectors: $\mathbf{A} = (\mathbf{B}, \mathbf{N}), \mathbf{x} = (\mathbf{x}_B, \mathbf{x}_N), \mathbf{c} = (\mathbf{c}_B, \mathbf{c}_N)$
 - The matrix B (N) contains the columns of A corresponding to the index set B (N) — Analogously for x and c

Original linear program

minimize
$$z = \mathbf{c}^{\mathrm{T}} \mathbf{x}$$
 subject to $\mathbf{A} \mathbf{x} = \mathbf{b}$, $\mathbf{x} > \mathbf{0}^n$

Rewritten linear program

minimize
$$z = \mathbf{c}_B^{\mathrm{T}} \mathbf{x}_B + \mathbf{c}_N^{\mathrm{T}} \mathbf{x}_N$$

subject to $\mathbf{B} \mathbf{x}_B + \mathbf{N} \mathbf{x}_N = \mathbf{b}$, $\mathbf{x}_B \geq \mathbf{0}^m, \ \mathbf{x}_N \geq \mathbf{0}^{n-m}$

Substitute: $\mathbf{x}_B = \mathbf{B}^{-1}\mathbf{b} - \mathbf{B}^{-1}\mathbf{N}\mathbf{x}_N \Longrightarrow$

minimize
$$z = [\mathbf{c}_N^{\mathrm{T}} - \mathbf{c}_B^{\mathrm{T}} \mathbf{B}^{-1} \mathbf{N}] \mathbf{x}_N + \mathbf{c}_B^{\mathrm{T}} \mathbf{B}^{-1} \mathbf{b}$$
 subject to $\mathbf{B}^{-1} \mathbf{N} \mathbf{x}_N \leq \mathbf{B}^{-1} \mathbf{b},$ $\mathbf{x}_N > \mathbf{0}^{n-m}$

Optimality and feasibility (review)

Optimality condition (for minimization)

The basis B is *optimal* if $\mathbf{c}_N^{\mathrm{T}} - \mathbf{c}_B^{\mathrm{T}} \mathbf{B}^{-1} \mathbf{N} \geq \mathbf{0}^{n-m}$ (i.e., reduced costs ≥ 0)

If not, choose as *entering* variable $j^* \in N$ the one with the lowest (negative) value of the reduced cost:

$$j^* = \operatorname{arg\,min}_{j \in \mathcal{N}} \left\{ c_j - \mathbf{c}_B^{\scriptscriptstyle \mathrm{T}} \mathbf{B}^{-1} \mathbf{A}_j
ight\}$$

Feasibility condition

For all $i \in B$ it holds that $x_i = (\mathbf{B}^{-1}\mathbf{b})_i - (\mathbf{B}^{-1}\mathbf{A}_{j^*})_i x_{j^*}$

To stay feasible as x_{j^*} increases from 0, $x_i \ge 0$ must hold $\forall i \in B$

 \implies Choose the *leaving* variable $i^* \in B$ according to

$$i^* = \arg\min_{i \in B} \left\{ \frac{(\mathbf{B}^{-1}\mathbf{b})_i}{(\mathbf{B}^{-1}\mathbf{A}_{i^*})_i} \mid (\mathbf{B}^{-1}\mathbf{A}_{j^*})_i > 0 \right\}$$

The simplex tableau ...

basis	Z	\mathbf{x}_B		RHS
Z	1	0	$-(\mathbf{c}_{N}^{\mathrm{\scriptscriptstyle T}}-\mathbf{c}_{B}^{\mathrm{\scriptscriptstyle T}}\mathbf{B}^{-1}\mathbf{N})$	$\mathbf{c}_B^{\mathrm{T}}\mathbf{B}^{-1}\mathbf{b}$
\mathbf{x}_B	0	ı	$B^{-1}N$	$B^{-1}b$

... should be interpreted as the system of equations:

$$z$$
 - $(\mathbf{c}_N^{\mathrm{T}} - \mathbf{c}_B^{\mathrm{T}} \mathbf{B}^{-1} \mathbf{N}) \mathbf{x}_N = \mathbf{c}_B^{\mathrm{T}} \mathbf{B}^{-1} \mathbf{b}$
 $\mathbf{x}_B + \mathbf{B}^{-1} \mathbf{N} \mathbf{x}_N = \mathbf{B}^{-1} \mathbf{b}$

- We wish to minimize z while also $\mathbf{x}_B \geq \mathbf{0}^m$ and $\mathbf{x}_N \geq \mathbf{0}^{n-m}$ must hold
- For the basis B, it holds that $\mathbf{x}_N = \mathbf{0}^{n-m}$, $\mathbf{x}_B = \mathbf{B}^{-1}\mathbf{b}$, and $z = \mathbf{c}_B^{\mathrm{T}}\mathbf{B}^{-1}\mathbf{b}$

In the simplex tableau, we have

basis	Z		×N	S	RHS
Z	1	0	$-(\mathbf{c}_{N}^{\mathrm{\scriptscriptstyle T}}-\mathbf{c}_{B}^{\mathrm{\scriptscriptstyle T}}\mathbf{B}^{-1}\mathbf{N})$	$\mathbf{c}_B^{\mathrm{T}}\mathbf{B}^{-1}$	$\mathbf{c}_B^{\mathrm{T}}\mathbf{B}^{-1}\mathbf{b}$
x _B	0	1	$B^{-1}N$	B^{-1}	$B^{-1}b$

- **s** denotes possible slack variables [the (blue) columns for **s** are copies of certain columns for $(\mathbf{x}_B, \mathbf{x}_N)$]
- The computations performed by the simplex algorithm involve matrix inversions (i.e., ${\bf B}^{-1}$) and *updates* of these
- A non-basic (basic) variable enters (leaves) the basis ⇒ one column, A_j, in B is replaced by another, A_k, from N
- Row operations \Leftrightarrow Updates of \mathbf{B}^{-1} (and of $\mathbf{B}^{-1}\mathbf{N}$, $\mathbf{B}^{-1}\mathbf{b}$, and $\mathbf{c}_{R}^{\mathrm{T}}\mathbf{B}^{-1}$)
- ⇒ Efficient numerical computations are crucial for the performance of the simplex algorithm

Sensitivity analysis—changes in the optimal solution as functions of changes in the problem data (Ch. 5)

- How does the optimum change when the right-hand-sides (resources, e.g.) change?
- When the objective coefficients (prices, e.g.) change?

Assume that the basis B is optimal:

$$\label{eq:subject_to_bound_equation} \begin{split} & \text{minimize} \quad z = \mathbf{c}_B^{\mathrm{T}} \mathbf{B}^{-1} \mathbf{b} + [\mathbf{c}_N^{\mathrm{T}} - \mathbf{c}_B^{\mathrm{T}} \mathbf{B}^{-1} \mathbf{N}] \mathbf{x}_N \\ & \text{subject to} \quad \quad \mathbf{B}^{-1} \mathbf{b} - \mathbf{B}^{-1} \mathbf{N} \mathbf{x}_N \geq \mathbf{0}^m, \\ & \mathbf{x}_N \geq \mathbf{0}^{n-m}, \end{split}$$

where $\mathbf{x}_B = \mathbf{B}^{-1}\mathbf{b} - \mathbf{B}^{-1}\mathbf{N}\mathbf{x}_N$

Shadow price = dual price

[Def. 5.3]

The shadow price of a constraint is defined as the change in the optimal value as a function of the (marginal) change in the RHS. It equals the optimal value of the corresponding dual variable $\mathbf{y}^{\mathrm{T}} = \mathbf{c}_{B}^{\mathrm{T}} \mathbf{B}^{-1}$.

In AMPL: display constraint_name.dual

- Suppose **b** changes to $\mathbf{b} + \Delta \mathbf{b}$
- ⇒ New optimal value:

$$z^{\text{new}} = \mathbf{c}_{B}^{\text{T}} \mathbf{B}^{-1} (\mathbf{b} + \Delta \mathbf{b}) = z + \mathbf{c}_{B}^{\text{T}} \mathbf{B}^{-1} \Delta \mathbf{b}$$

• The current basis is feasible if

$$\mathbf{B}^{-1}(\mathbf{b} + \Delta \mathbf{b}) \geq 0$$

- If not: negative values will occur in the RHS of the simplex tableau
- The reduced costs are unchanged (positive, at optimum)
 ⇒ resolve using the dual simplex method (Ch. 7.3)

A linear program

minimize
$$z = -x_1 -2x_2$$

subject to $-2x_1 +x_2 \le 2$
 $-x_1 +2x_2 \le 7$
 $x_1 \le 3$
 $x_1, x_2 \ge 0$

Draw Graph

The optimal solution is given by

basis	Z	x_1	<i>x</i> ₂	s_1	<i>s</i> ₂	<i>s</i> ₃	RHS
Z	1	0	0	0	-1	-2	-13
<i>x</i> ₂	0	0	1	0	$\frac{1}{2}$	$\frac{1}{2}$	5
x_1	0	1	0	0	Ō	$\bar{1}$	3
s_1	0	0	0	1	$-\frac{1}{2}$	<u>3</u> 2	3

Change the right-hand-side according to

minimize
$$z=-x_1-2x_2$$
 subject to $-2x_1+x_2\leq 2$ $-x_1+2x_2\leq 7+\delta$ $x_1\leq 3$ $x_1,x_2\geq 0$

The change in the RHS is given by $\mathbf{B}^{-1}(0,\delta,0)^{\mathrm{T}}=(\frac{1}{2}\delta,0,-\frac{1}{2}\delta)^{\mathrm{T}}$ \Rightarrow new optimal tableau:

basis	Z	<i>X</i> ₁	<i>X</i> ₂	s_1	s ₂	<i>S</i> 3	RHS
Z	1	0	0	0	-1	-2	$-13-\delta$
<i>X</i> ₂	0	0	1	0	$\frac{1}{2}$	$\frac{1}{2}$	$5+\frac{1}{2}\delta$
x_1	0	1	0			Ī	3
s_1	0	0	0	1	$-\frac{1}{2}$	<u>3</u>	$3-\frac{1}{2}\delta$

- The current basis is feasible if $-10 \le \delta \le 6$ (i.e., if RHS ≥ 0)
- In AMPL: display constraint name.down, .current, .up

Suppose $\delta = 8$. The simplex tableau then appears as

basis	Z	<i>x</i> ₁	<i>x</i> ₂	<i>s</i> ₁	s ₂	<i>S</i> ₃	RHS
Z	1	0	0	0	-1	-2	-21
<i>x</i> ₂	0	0	1	0	$\frac{-1}{\frac{1}{2}}$	$\frac{1}{2}$	9
x_1	0	1	0	0	Ō	$\overline{1}$	3
s_1	0	0	0	1	$-\frac{1}{2}$	<u>3</u> 2	-1

- Dual simplex iteration: $s_1 = -1$ has to leave the basis
- Find smallest ratio between reduced cost (non-basic column) and (negative) elements in the "s₁-row" (to stay optimal)

s_2 will enter the basis — new optimal tableau:

basis	Z	x_1	<i>X</i> ₂	s_1	<i>s</i> ₂	<i>s</i> ₃	RHS
Z	1	0		-2			-19
<i>X</i> ₂		0	1	1	0	2	8
x_1	0	1	0	0	0	1	3
<i>s</i> ₂	0	0	0	-2	1	2 1 -3	2

Changes in the objective coefficients

Reduced cost

The *reduced cost* of a non-basic variable defines the change in the objective value when the value of the corresponding variable is (marginally) increased.

The basis B is optimal if $\mathbf{c}_N^{\mathrm{T}} - \mathbf{c}_B^{\mathrm{T}} \mathbf{B}^{-1} \mathbf{N} \geq \mathbf{0}^{n-m}$ (i.e., reduced costs ≥ 0)

In AMPL: display variable_name.rc

- Suppose **c** changes to $\mathbf{c} + \Delta \mathbf{c}$
- The new optimal value:

$$\mathbf{z}^{\mathrm{new}} = (\mathbf{c}_B + \Delta \mathbf{c}_B)^{\mathrm{T}} \mathbf{B}^{-1} \mathbf{b} = z + \Delta \mathbf{c}_B^{\mathrm{T}} \mathbf{B}^{-1} \mathbf{b}$$

• The current basis is optimal if

$$(\mathbf{c}_N + \Delta \mathbf{c}_N)^{\mathrm{\scriptscriptstyle T}} - (\mathbf{c}_B + \Delta \mathbf{c}_B)^{\mathrm{\scriptscriptstyle T}} \mathbf{B}^{-1} \mathbf{N} \geq \mathbf{0}$$

• If not: more simplex iterations to find the optimal solution

Changes in the objective coefficients

Change the objective according to

$$\begin{array}{lll} \text{minimize} & z = & -x_1 & +(-2+\delta)x_2 \\ \text{subject to} & & -2x_1 & +x_2 & \leq 2 \\ & & -x_1 & +2x_2 & \leq 7 \\ & & x_1 & & \leq 3 \\ & & x_1, x_2 & \geq 0 \end{array}$$

The changes in the reduced costs are given by $-(\delta,0,0)\mathbf{B}^{-1}\mathbf{N}=(-\frac{1}{2}\delta,-\frac{1}{2}\delta)\Rightarrow$ new optimal tableau:

basis	Z	x_1	x_2	s_1	<i>s</i> ₂	s ₃	RHS
Z	1	0	0	0	$-1 + \frac{1}{2}\delta$	$-2 + \frac{1}{2}\delta$	$-13+5\delta$
	0	0	1	0	$\frac{1}{2}$	$\frac{1}{2}$	5
x_1	0	1	0	0	Ō	ī	3
s_1	0	0	0	1	$-\frac{1}{2}$	<u>3</u> 2	3

- The current basis is optimal if $\delta \leq 2$ (i.e., if reduced costs ≥ 0)
- In AMPL: display variable_name.down, .current, .up

Changes in the objective coefficients

Suppose $\delta = 4 \Rightarrow$ new tableau:

basis	z	<i>x</i> ₁	<i>x</i> ₂	<i>s</i> ₁	<i>s</i> ₂	<i>s</i> ₃	RHS
Z	1	0	0	0	1	0	7
<i>X</i> ₂	0	0	1	0	$\frac{1}{2}$	<u>1</u>	5
x_1	0	1	0	0	0	1	3
s_1	0	0	0	1	$-\frac{1}{2}$	<u>3</u> 2	3

Let s_2 enter and x_2 leave the basis. New optimal tableau:

basis	Z	x_1	<i>x</i> ₂	s_1	<i>s</i> ₂	<i>s</i> ₃	RHS
Z							-3
s ₂	0	0	2 0 1	0	1	1	10
<i>x</i> ₁	0	1	0	0	0	1	3
s_1	0	0	1	1	0	2	8