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Methods for ILP: Overview (Ch. 14.1)

Enumeration

Implicit enumeration: Branch–and–bound

Relaxations

Decomposition methods: Solve simpler problems repeatedly

Add valid inequalities to an LP ⇒ “cutting plane methods”

Lagrangian relaxation

Heuristic algorithms – optimum not guaranteed

“Simple” rules ⇒ feasible solutions (usually fairly good but
not optimal)

Construction heuristics

Local search heuristics
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Convex sets

A set S is convex if, for any elements x, y ∈ S it holds that

αx+ (1− α)y ∈ S for all 0 ≤ α ≤ 1

Examples:

xx

x

y
y

y

Convex sets Non-convex sets

Linear optimization problems have convex feasible sets
Integrality requirements ⇒ nonconvex feasible set
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Relaxations and feasible solutions (Ch. 14.2)

Consider a minimization integer linear program (ILP)

[ILP] z∗ := min c⊤x
subject to Ax ≤ b

x ≥ 0 and integer

The feasible set X = {x ∈ Z n
+ |Ax ≤ b} is non-convex

How can one prove that a solution x∗ ∈ X is optimal?

We cannot use strong duality/complementarity as for linear
optimization (where X is polyhedral ⇒ convexity)

Bounds on the optimal value

Optimistic estimate z ≤ z∗ from a relaxation of ILP
Pessimistic estimate z̄ ≥ z∗ from a feasible solution to ILP
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Optimistic estimates of z∗ from relaxations

Either: Enlarge the set X by removing constraints
=⇒ X relax ⊇ X

Or: Replace c⊤x by an underestimating function f , i.e., such
that f (x) ≤ c⊤x for all x ∈ X

Or: Do both of the above

⇒ solve a relaxation of (ILP)

Example: enlarge X by relaxing the integrality requirements

X = {x ≥ 0 | Ax ≤ b, x integer }

X LP = {x ≥ 0 | Ax ≤ b}

⇒ zLP := min
x∈X LP

c⊤x

It holds that zLP ≤ z∗ since X ⊆ X LP
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The travelling salesperson problem (TSP) (Ch. 13.10)

Given n connected cities

Distance on each
connection

Find the shortest tour
that passes through all
the cities
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V = {1, . . . , n}: the set of
cities

dij : distance from city i to
city j

Binary variable xij ⇐⇒
connection from i to j

Computationally hard to
solve due to combinatorial

explosion

Several versions of the
TSP: Euclidean, metric,
symmetric ...
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An ILP formulation of the TSP problem

min
∑

i∈V

∑

j∈V

dijxij ,

s.t.
∑

j∈V

xij = 1, i ∈ V , (1)

∑

i∈V

xij = 1, j ∈ V , (2)
∑

i∈U,j∈V \U

xij ≥ 1, ∀U ⊂ V : 2 ≤ |U| ≤ |V | − 2, (3)

xij binary i , j ∈ V (4)

Cf. the assignment problem Draw graph * 2 !

Enter and leave each city exactly once ⇔ (1) and (2) Draw!

Constraints (3): subtour elimination Draw!

Alternative formulation of (3): Draw!∑
(i ,j)∈U xij ≤ |U| − 1, ∀U ⊂ V : 2 ≤ |U| ≤ |V | − 2
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Relaxation principles that yield more tractable problems

Linear programming relaxation

Remove integrality requirements (enlarge X ), but still an
exponential number of constraints (3)

Combinatorial relaxation

E.g. remove subtour constraints (3) ⇒ minimum-cost assignment
(enlarge X )

draw!

Lagrangean relaxation ⇒ Lagrange dual

Move “complicating” constraints to the objective function, with
penalties for infeasible solutions; then find “optimal” penalties
(enlarge X and construct a function f such that f (x) ≤ c⊤x,
∀x ∈ X )
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Tight bounds

Suppose that x̄ ∈ X is a feasible solution to ILP
(min-problem) and that x solves a relaxation of ILP

Then, it holds that

z := c⊤x ≤ z∗ ≤ c⊤x̄ =: z̄

If z̄ − z ≤ ε then the value of the solution candidate x̄ is at
most ε from the optimal value z∗

Efficient solution methods for ILP combine relaxation and

heuristic methods to find tight bounds (small ε ≥ 0)
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Branch–&–Bound algorithms (B&B) (Ch. 15)

[ILP] z∗ = min
x∈X

c⊤x, where X ⊂ Z n

Divide–&–Conquer: a general principle to partition and search
the feasible space

Branch–&–Bound: Divide–and–conquer for finding optimal

solutions to optimization problems with integrality
requirements

Can be adapted to different types of models
Can be combined with other (e.g. heuristic) algorithms
Also called implicit enumeration and tree search
Idea: Enumerate all feasible solutions by a successive
partitioning of X into a family of subsets
Enumeration organized in a tree using graph search; it is made
implicit by utilizing approximations of z∗ from relaxations of
[ILP] for pruning branches from the tree
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Branch–&–bound for ILP: Main concepts

Relaxation: a simplification of [ILP] in which some constraints are
removed

Purpose: to get simple (i.e., polynomially solvable) (node)
subproblems, and optimistic approximations of z∗

Examples: remove integrality requirements, remove or
Lagrangean relax complicating (linear) constraints (e.g.,
sub-tour constraints)

Branching strategy: rules for partitioning a subset of X

Purpose: exclude the solution to a relaxation if it is not
feasible in [ILP] ⇐⇒ a partitioning of the feasible set

Examples: Branch on fractional values, subtours, etc
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B&B: Main concepts (continued)

Tree search strategy: defines the order in which the nodes in the
B&B tree are created and searched

Purpose: quickly find good feasible solutions =⇒ limit the size
of the tree

Examples: depth-, breadth-, best-first.

Node cutting criteria: rules for deciding when a subset should not
be further partitioned

Purpose: avoid searching parts of the tree that cannot contain
an optimal solution

Cut off a node (i.e., prune a whole branch) if the
corresponding node subproblem has

no feasible solution, or
an optimal solution which is feasible in [ILP], or
an optimal objective value that is worse (higher) than that of
any known feasible solution
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ILP: Example of a Branch–&–Bound solution

Relax the integrality requirements =⇒ the node subproblem is
a linear (continuous) optimization problem

Branch over fractional variable values

Here: the tree is searched in depth-first order

Here: branches are pruned due to integrality/infeasibility
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