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Overview

@ Relaxations: cutting planes and Lagrangean duals

@ TSP and routing problems

@ Branch—and-bound for structured problems
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Good and ideal formulations (Ch. 14.3)

Ideal since all extreme
points are integral

The linear program has

integer extreme points
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Cutting planes: A very small example

Consider the following ILP:

min{—x; — x2 : 2x1 + 4x2 < 7,x1,x > 0 and integer}

@ ILP optimal solution: z = —3, x = (3,0)
@ LP (continuous relaxation) optimum: z = —3.5, x = (3.5, 0)

Generate a simple cut

“Divide the constraint” by 2
and round the RHS down
X1+ 2x <35 = x1+2x §31

Adding this cut to the
continuous relaxation yields
the optimal ILP solution
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Cutting planes: valid inequalities (Ch. 14.4)

Consider the ILP

max 7x1 + 10x>
subjectto —x31+3x% < 6 (1)
x1+x < 35 (2)
x1,x0 > 0, integer

@ LP optimum: z = 66.5, x = (4.5, 3.5)
@ ILP optimum: z =58, x = (4, 3)

Generate a VI:

“Add” the two constraints (1) and
(2): 6x1 +4x2 < 41 =
3x1 4+ 2x <20 =

Generate another VI:

“T(1)+(2)": 22% < 77 =
= x = (4.57,3)
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Cutting plane algorithms (iterativley better approximations

of the convex hull) (Ch. 14.5)

@ Choose a suitable mathematical formulation of the problem

A general cutting plane algorithm (cf. p. 378)

© Solve the linear programming (LP) relaxation

Q If the LP solution is integer: stop; an optimal solution to ILP
is found

© Add one or several valid inequalities that cut off the fractional
solution but none of the integer solutions

© Resolve the new problem and go to step 2.

@ Remark: An inequality in higher dimensions defines a
hyper-plane; therefore the name cutting plane
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About cutting plane algorithms

Problem: It may be necessary to generate VERY MANY cuts

(]

Each cut should also pass through at least one integer point
= faster convergence
Methods for generating valid inequalities

@ Chvatal-Gomory cuts (combine constraints, make beneficial
roundings of LHS and RHS)

o Gomory's method: generate cuts from an optimal simplex basis
(Ch. 14.5.1)

(]

Pure cutting plane algorithms are usually less efficient than
branch—&-bound

In commercial solvers (e.g. CPLEX), cuts are used to help
(presolve) the branch—-&-bound algorithm

(]

For problems with specific structures (e.g. TSP and set
covering) problem specific classes of cuts are used
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Gomory's cutting plane algorithm (Ch. 14.5.1)

Step 3 of the algorithm when the linear programming optimal
solution is fractional

@ Consider the optimal basis B:

xg + B"'Nxy = B~ b

o For all i € B, defining 3;; = (B™'N);; and b; = (B~'b);, then
X+ 2 jen 3% = bi (1)

@ Consider an i € B such that b; is non-integer and define the
fractions
) B,’ = E,‘ = I_E,J € (0, 1);
° §j:=3a;— 3] €[0,1),jEN
@ From (1) then follows that

Xi+ Y jenl3ix — |Bi] = bi — Y jen 8% (2)
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Gomory's cutting plane algorithm (Ch. 14.5.1)

)

(]

By construction, the LHS of (2),
Xi + 3 ienl )X — | b is integer (3)

i.e.,

Then, also b; — >_jen dijxj must be integer (RHS of (2))

Since E,- <1, 3;>0and x; >0, j € N, it follows that

B,’-Zé,‘jxj'<1 — BlSZ‘sUXJ
JEN JjeN

Add the constraint )

jeN djjXj — Xpy+1 = bj to the problem

Since B,- >0and x; =0, j €N, it is clear that the current
basic solution becomes infeasible

But the added constraint does not cut any integer solutions
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Lagrangian relaxation (= optimistic estimates of z*)

(Ch. 17.1-17.2)

Consider a minimization integer linear program (ILP)

[ILP] z* = min c¢'x
subjectto Ax < b (1)
Dx < d (2)
x > 0 and integer

Assume that the constraints (1) are complicating (subtour

eliminating constraints for TSP, e.g.)
@ Define the set X = {x € Z |Dx < d}

@ Remove the constraints (1) and add them—with penalty
parameters v—to the objective function

h(v) = )r(nelxn {ch +v'(Ax — b)} (3)
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Weak duality of Lagrangian relaxations
For any v > 0 it holds that h(v) < z*.

Beuvis.

Let X be feasible in [ILP] = X € X and Ax < b. It then holds that

h(v) = man {ch +v'(Ax — b)} <c'x+v'(Ax—b)<c'x
xe

Since an optimal solution x* to [ILP] is also feasible, it holds that
h(v) < c¢'x* = z*, O

4

= h(v) is a lower bound on the optimal value z* for any v > 0

The best lower bound is given by

h* = max h(v) = max {min {ch +v' (Ax — b)}} <z
v>0 v>0 [ xeX
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Tractable Lagrangian relaxations

@ Special algorithms for maximizing the Lagrangian dual
function h exist (e.g., subgradient optimization, Ch. 17.3)

h is always concave but typically nondifferentiable
For each value of v chosen, a subproblem (3) must be solved

For general ILP's: typically a non-zero duality gap h* < z*

e © ¢ ¢

The Lagrangian relaxation bound is never worse that the
linear programming relaxation bound, i.e. zM'F < h* < z*

o If the set X has the integrality property (i.e., X'F has integral
extreme points) then h* = zI'F

@ Choose the constraints (Ax < b) to dualize such that the
relaxed problem (3) is computationally tractable but still does
not possess the integrality property

Lecture 9 Linear and integer optimization with applications 12/16



An ILP Example

[HOMEWORK]

Find optimistic and pessimistic bounds for the following ILP
example using the branch—&-bound algorithm, a cutting plane
algorithm, and Lagrangean relaxation.

max 5x3 + 4xo

s.t. x1+x < b
10x; +6x0 < 45
x1,xp > 0 and integer

The linear programming optimal solution is given by the basis
xg = {x1, x2} with optimal values z = 23.75, x; = 3.75 and
Xo = 1.25
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ILP formulation of the TSP problem

@ dj: distance from city / to city j
@ Binary variables x;; for each connection
e V ={1,...,n}: set of nodes (cities)

min Y Y dijxjj, (0)
ievjev

s.t. Sx = 1, eV, (1)
jev

Z Xij = 17 je Vv (2)
iev

xj > 1, VUCV:2<|U<|V[-2, (3)
icUjeV\U

xj € {0,1}, i,jeV (4)

@ (0)—(2), (4): assignment problem
@ Enter and leave each city exactly once < (1) and (2)
@ Constraints (3): subtour elimination
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Solution methods for the TSP Problem

@ Tailored branch—&-bound (Ch. 15)
@ Heuristics

s Constructive heuristics (Ch. 16.3)

o Local search heuristics (Ch. 16.4)

@ Approximation algorithms (Ch. 16.6)
@ Metaheuristics (Ch. 16.5)

@ Lagrangean relaxation and subgradient optimization (Ch. 17).

@ Common difficulty for all solution methods for the TSP:
Combinatorial explosion: # possible tours = n!

= Very many subtour elimination constraints (3)
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Branch—and-bound algorithm for TSP (Ch. 15.4.2)

@ Relaxing just the binary constraints (4) in TSP does not yield
a tractable problem, since the number of subtour elimination
constraints (3) is very large

= An LP with very many constraints

@ Relaxing the subtour eliminating constraints (3) yields an
assignment problem, which can be solved in polynomial time

@ Solutions to a relaxed problem typically contains a number of
sub-tours

@ Branch on these sub-tours (rather than on fractional variables)

@ Branching < partitioning of the solution space

DRAW AN EXAMPLE
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