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Overview

Relaxations: cutting planes and Lagrangean duals

TSP and routing problems

Branch–and–bound for structured problems
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Good and ideal formulations (Ch. 14.3)

Ax ≤ b

Ideal since all extreme

points are integral

The linear program has

integer extreme points
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Cutting planes: A very small example

Consider the following ILP:

min{−x1 − x2 : 2x1 + 4x2 ≤ 7, x1, x2 ≥ 0 and integer}

ILP optimal solution: z = −3, x = (3, 0)

LP (continuous relaxation) optimum: z = −3.5, x = (3.5, 0)

Generate a simple cut

“Divide the constraint” by 2
and round the RHS down

x1 + 2x2 ≤ 3.5 ⇒ x1 + 2x2 ≤ 3

Adding this cut to the
continuous relaxation yields
the optimal ILP solution
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Cutting planes: valid inequalities (Ch. 14.4)

Consider the ILP

max 7x1 + 10x2
subject to −x1 + 3x2 ≤ 6 (1)

7x1 + x2 ≤ 35 (2)
x1, x2 ≥ 0, integer

LP optimum: z = 66.5, x = (4.5, 3.5)
ILP optimum: z = 58, x = (4, 3)

Generate a VI:

“Add” the two constraints (1) and
(2): 6x1 + 4x2 ≤ 41 ⇒
3x1 + 2x2 ≤ 20 ⇒ x = (4.36, 3.45)

Generate another VI:

“7·(1)+(2)”: 22x2 ≤ 77 ⇒ x2 ≤ 3
⇒ x = (4.57, 3)

(1)
(2)
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Cutting plane algorithms (iterativley better approximations
of the convex hull) (Ch. 14.5)

Choose a suitable mathematical formulation of the problem

A general cutting plane algorithm (cf. p. 378)

1 Solve the linear programming (LP) relaxation

2 If the LP solution is integer: stop; an optimal solution to ILP
is found

3 Add one or several valid inequalities that cut off the fractional

solution but none of the integer solutions

4 Resolve the new problem and go to step 2.

Remark: An inequality in higher dimensions defines a
hyper-plane; therefore the name cutting plane
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About cutting plane algorithms

Problem: It may be necessary to generate VERY MANY cuts

Each cut should also pass through at least one integer point
⇒ faster convergence

Methods for generating valid inequalities
Chvatal-Gomory cuts (combine constraints, make beneficial
roundings of LHS and RHS)
Gomory’s method: generate cuts from an optimal simplex basis
(Ch. 14.5.1)

Pure cutting plane algorithms are usually less efficient than
branch–&–bound

In commercial solvers (e.g. CPLEX), cuts are used to help
(presolve) the branch–&–bound algorithm

For problems with specific structures (e.g. TSP and set
covering) problem specific classes of cuts are used
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Gomory’s cutting plane algorithm (Ch. 14.5.1)

Step 3 of the algorithm when the linear programming optimal
solution is fractional

Consider the optimal basis B :

xB + B−1NxN = B−1b

For all i ∈ B , defining āij = (B−1N)ij and b̄i = (B−1b)i , then

xi +
∑

j∈N āijxj = b̄i (1)

Consider an i ∈ B such that b̄i is non-integer and define the
fractions

b̃i := b̄i − ⌊b̄i⌋ ∈ (0, 1);
ãij := āij − ⌊āij⌋ ∈ [0, 1), j ∈ N

From (1) then follows that

xi +
∑

j∈N⌊āij⌋xj − ⌊b̄i⌋ = b̃i −
∑

j∈N ãijxj (2)
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Gomory’s cutting plane algorithm (Ch. 14.5.1)

By construction, the LHS of (2), i.e.,

xi +
∑

j∈N⌊āij⌋xj − ⌊b̄i⌋ is integer (3)

Then, also b̃i −
∑

j∈N ãijxj must be integer (RHS of (2))

Since b̃i < 1, ãij ≥ 0 and xj ≥ 0, j ∈ N, it follows that

b̃i −
∑

j∈N

ãijxj < 1 =⇒ b̃i ≤
∑

j∈N

ãijxj

Add the constraint
∑

j∈N ãijxj − xn+1 = b̃i to the problem

Since b̃i > 0 and xj = 0, j ∈ N, it is clear that the current

basic solution becomes infeasible

But the added constraint does not cut any integer solutions
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Lagrangian relaxation (⇒ optimistic estimates of z∗)
(Ch. 17.1–17.2)

Consider a minimization integer linear program (ILP)

[ILP] z∗ = min c⊤x
subject to Ax ≤ b (1)

Dx ≤ d (2)
x ≥ 0 and integer

Assume that the constraints (1) are complicating (subtour
eliminating constraints for TSP, e.g.)

Define the set X = {x ∈ Z n
+ |Dx ≤ d}

Remove the constraints (1) and add them—with penalty
parameters v—to the objective function

h(v) = min
x∈X

{

c⊤x+ v⊤(Ax− b)
}

(3)
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Weak duality of Lagrangian relaxations

Theorem

For any v ≥ 0 it holds that h(v) ≤ z∗.

Bevis.

Let x be feasible in [ILP] ⇒ x ∈ X and Ax ≤ b. It then holds that

h(v) = min
x∈X

{

c⊤x+ v⊤(Ax− b)
}

≤ c⊤x+ v⊤(Ax− b) ≤ c⊤x.

Since an optimal solution x∗ to [ILP] is also feasible, it holds that
h(v) ≤ c⊤x∗ = z∗.

⇒ h(v) is a lower bound on the optimal value z∗ for any v ≥ 0

The best lower bound is given by

h∗ = max
v≥0

h(v) = max
v≥0

{

min
x∈X

{

c⊤x+ v⊤(Ax− b)
}

}

≤ z∗
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Tractable Lagrangian relaxations

Special algorithms for maximizing the Lagrangian dual
function h exist (e.g., subgradient optimization, Ch. 17.3)

h is always concave but typically nondifferentiable

For each value of v chosen, a subproblem (3) must be solved

For general ILP’s: typically a non-zero duality gap h∗ < z∗

The Lagrangian relaxation bound is never worse that the
linear programming relaxation bound, i.e. zLP ≤ h∗ ≤ z∗

If the set X has the integrality property (i.e., XLP has integral
extreme points) then h∗ = zLP

Choose the constraints (Ax ≤ b) to dualize such that the
relaxed problem (3) is computationally tractable but still does
not possess the integrality property
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An ILP Example

[Homework]

Find optimistic and pessimistic bounds for the following ILP
example using the branch–&–bound algorithm, a cutting plane
algorithm, and Lagrangean relaxation.

max 5x1 + 4x2
s.t. x1 + x2 ≤ 5

10x1 + 6x2 ≤ 45
x1, x2 ≥ 0 and integer

The linear programming optimal solution is given by the basis
xB = {x1, x2} with optimal values z = 23.75, x1 = 3.75 and
x2 = 1.25
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ILP formulation of the TSP problem

dij : distance from city i to city j

Binary variables xij for each connection
V = {1, . . . , n}: set of nodes (cities)

min
∑

i∈V

∑

j∈V

dijxij , (0)

s.t.
∑

j∈V

xij = 1, i ∈ V , (1)
∑

i∈V

xij = 1, j ∈ V , (2)
∑

i∈U,j∈V\U

xij ≥ 1, ∀U ⊂ V : 2 ≤ |U | ≤ |V |− 2, (3)

xij ∈ {0, 1}, i , j ∈ V (4)

(0)–(2), (4): assignment problem
Enter and leave each city exactly once ⇔ (1) and (2)
Constraints (3): subtour elimination
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Solution methods for the TSP Problem

Tailored branch–&–bound (Ch. 15)

Heuristics
Constructive heuristics (Ch. 16.3)
Local search heuristics (Ch. 16.4)
Approximation algorithms (Ch. 16.6)
Metaheuristics (Ch. 16.5)

Lagrangean relaxation and subgradient optimization (Ch. 17).

Common difficulty for all solution methods for the TSP:
Combinatorial explosion: # possible tours ≈ n!

⇒ Very many subtour elimination constraints (3)
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Branch–and–bound algorithm for TSP (Ch. 15.4.2)

Relaxing just the binary constraints (4) in TSP does not yield
a tractable problem, since the number of subtour elimination
constraints (3) is very large

⇒ An LP with very many constraints

Relaxing the subtour eliminating constraints (3) yields an
assignment problem, which can be solved in polynomial time

Solutions to a relaxed problem typically contains a number of
sub-tours

Branch on these sub-tours (rather than on fractional variables)

Branching ⇔ partitioning of the solution space

Draw an example
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