MVE165/MMG631 Linear and Integer Optimization with Applications Lecture 1 Introduction; course map; optimization; modelling; graphic solution

Ann-Brith Strömberg

2019-03-26

Staff

Examiner and lecturer

• Ann-Brith Strömberg (anstr@chalmers.se, room L2087)

- Lecturer—on software and computer exercise
 - Edvin Åblad

Problem solving sessions and assignment advisement

- Caroline Granfeldt (cargranf@chalmers.se, room L2104)
- Gabrijela Obradović (gabobr@chalmers.se, room L2105)
- Sunney Fotedar (sunney@chalmers.se, room L2105)

Course homepage, PingPong and TimeEdit

Course homepage

- www.math.chalmers.se/Math/Grundutb/CTH/mve165/1819
- Details, information on assignments and computer exercises, deadlines, lecture notes, problem solving sessions etc
- Continuously updated with new information

• Learning platform: PingPong

- https://pingpong.chalmers.se
- All hand-in of assignments
- Discussion forum about software etc.
- Course representatives & evaluation

TimeEdit

• Check TimeEdit continuously for rooms (lectures, problem solving sessions, lab rooms)

Organization

- Lectures mathematical optimization theory; introduction to software and assignments
- **Problem solving sessions** hands-on exercises, two parallel groups (Wed 8–10 OR Thu 10–12; see TimeEdit)
- Assignments modelling, use software solvers, analyze solutions, write reports, opposition & oral presentation
 - Assignment work should be done in groups of 2 persons
 - Define your project groups on the PingPong event for MVE165/MMG631
 - The name of the project group must be: "FirstName1 Surname1 - FirstName2 Surname2"
 - Students without PingPong access: contact me by email

Computer exercise, lab rooms and software

A computer exercise on software solvers and linear optimization:

http://www.math.chalmers.se/Math/Grundutb/CTH/mve165/1819/#Software Perform this exercise during this first study week, in order to prepare for the assignment work

- Computer rooms are reserved (check TimeEdit for details)
 - most Mondays at 13.15–15.00,
 - most Wednesdays at 13.15–17.00, and
 - this Friday at 13.15–15.00
- The computer sessions are NOT mandatory
- Teachers will be present

Course evaluation process

- Questionnaires will be sent out to all students registered for the course after the exam week
- The examiner calls the course representatives to the introductory, (recommended) middle, and final meetings
- Course representatives (Chalmers)
 - TBA (in PingPong; the chosen ones will be notified)
 - A volountary GU student?

Literature

- Main course book:
 - English version: Optimization (2010)
 - Swedish version: Optimeringslära (2008)

by J. Lundgren, M. Rönnqvist, and P. Värbrand. Studentlitteratur

Exercise book:

- English version: Optimization Exercises (2010)
- Swedish version: Optimeringslära Övningsbok (2008)

by M. Henningsson, J. Lundgren, M. Rönnqvist, and P. Värbrand. Studentlitteratur

- STORE by Chalmers/Studentlitteratur/Adlibris/...
- Also some hand-outs (as indicated in the lecture notes)

Examination requirements

- Perform three project assignments in groups of two students
 - For Assignment 3 there will be two alternatives
- Written reports of three assignments
- For each assignment hand in, individually, a written report on the distribution of the the project work within the group and on how the cooperation has worked out
- A written opposition to another group's report of Assignment 2 (individual peer review)
- An oral presentation of Assignment 3 (week 22)
- Presence at one full oral presentation session
- To be able to receive a grade higher than 3 or G, the written reports and opposition as well as the oral presentation must be of high quality (mark 2 in PingPong). Students aiming at grade 4, 5, or VG must also pass an oral exam (week 23 or 24)

Overview of the lectures and course contents

Mathematical subjects

- Linear optimization models, modelling, theory, solution methods, and sensitivity analysis
- Discrete optimization models, properties, and solution methods
- Optimization problems that can be modelled as flows in networks, theory, and solution methods
- Multi-objective optimization
- Mixes of the above
- Overview of non-linear optimization models, properties, and solution methods

Activities

- Applications of optimization
- Mathematical modelling
- Theory mathematical properties of the models
- Solution techniques algorithms
- Software solvers
- Implementation of models in solvers
- Analysis of results

Introduction Optimization overview Optimization models

Optimization: "Do something as good as possible"

- Something: Which are the decision alternatives?
 - $x_{ij} = \begin{cases} 1 & \text{if customer } j \text{ is visited } directly \text{ after customer } i \\ 0 & \text{else} \end{cases}$ • $y_{ik} = \begin{cases} 1 & \text{if customer } i \text{ is visited by vehicle } k \\ 0 & \text{else} \end{cases}$
- Possible: What restrictions are there?
 - Each customer should be visited exactly once
 - Time windows, transport needs and capacity, pick up at one customer deliver at another, different types of vehicles, ...
- Good: What is a relevant optimization criterion?
 - Minimize the total distance / travel time / emissions / waiting time / ...

The classical travelling salesperson problem

 Variants of routing problems: refrigerated goods, transportation service for disabled persons, school buses, hybrid propulsion vehicles (electr./diesel), robot operations, ...

A few examples of application areas

• Logistics: production and transport

- Optimize routes for transports, snow removal, school buses, ...
- Location of stores, warehouses, vehicle fleet parkings, ...
- Planning of wood cut and transports
- Packing of containers
- Production planning and scheduling
- Dimensioning of batteries and electric motors in routing applications
- Energy
 - Energy production planning wrt varying supply and demand
 - Investment in energy production technology
 - Location of power plants and infrastructure

Finance

- Financial risk management
- Portfolio optimization
- Investment planning
- Medicine
 - Compute radiation directions/intensities for cancer treatment
 - Reconstruct images from x-ray measurements

The process of optimization

History of mathematical optimization

- During World War II decision problems became systematically treated: *Operations Research*
- After the war: use of operations research for civil operations
- The ideas spread to many countries
- Early operations research include inventory planning
- This course will treat mathematical optimization models and methods for decision problems that can be modelled using linear forms and continuous and/or integer requirements on the variables

A few moments in optimization history

- Euler (1735): Seven bridges of Köningsberg (graph theory)
- Gauss (1777–1855): 1st optimization technique *steepest descent*
- W.R. Hamilton (1857): "icosian game"
 ⇒ the travelling salesperson problem
 (Hamilton cycle)

- L.V. Kantorovich (1939): A linear model for *optimization of plywood manufacturing* and an *algorithm* for its solution
- George B. Dantzig (1947): Linear programming *the simplex algorithm* (exponential time)
 - Program \Leftrightarrow military training and logistics schedules
- Kantorovich and Koopmans (1975): Nobel Memorial Prize in Economic Sciences
- N. Karmarkar (1984) algorithm for linear programming (polynomial time)

Introduction Optimization overview Optimization models

Graphical solution LP ILP

A tiny manufacturing example: Produce tables and chairs from two types of blocks

A tiny manufacturing example, continued

- A chair is assembled from one large and two small blocks
- A table is assembled from two blocks of each size
- Only 6 large and 8 small blocks are avaliable
- A table is sold at a revenue of 1600:-
- A chair is sold at a revenue of 1000:-
- Assume that all items produced can be sold and determine an optimal production plan

A tiny mathematical optimization model

- **Something** What decision alternatives? \Rightarrow Variables
 - x_1 = number of tables produced and sold
 - x_2 = number of chairs produced and sold
- **Possible** What restrictions? \Rightarrow Constraints
 - Maximum supply of large blocks: 6

$$2x_1 + x_2 \le 6$$

• Maximum supply of small blocks: 8

$$2x_1+2x_2\leq 8$$

• Physical restrictions (also: x₁, x₂ integral)

$$x_1, x_2 \ge 0$$

- Good Relevant optimization criterion?⇒Objective function
 - Maximize the total revenue

$$1600x_1 + 1000x_2 \rightarrow \max$$

Solve the tiny model using LEGO and marginal values

 $x_1 = x_2 = 0$ Use the "best marginal profit" to choose the item to produce

- x₁ has the highest marginal profit (1600:-/table)
 ⇒ produce as many tables as possible
- At $x_1 = 3$: no more large blocks left

Solve the tiny model using LEGO and marginal values

Solve the tiny model using LEGO and marginal values

Geometric solution of the tiny model

Introduction Optimization overview Optimization models

Linear optimization models (programs)

- The tiny manufacturing model is a *linear program* (LP), i.e., all relations are described by *linear forms*
- A general linear program:

 $\begin{bmatrix} \text{minimize or maximize} & c_1 x_1 + \ldots + c_n x_n \\ \text{subject to} & a_{i1} x_1 + \ldots + a_{in} x_n \quad \left\{ \begin{array}{c} \leq \\ z \\ \geq \end{array} \right\} \quad b_i, \quad i = 1, \ldots, m \\ \\ x_j \quad \geq \quad 0, \quad j = 1, \ldots, n \end{bmatrix}$

- The non-negativity constraints on x_j, j = 1,..., n are not necessary, but usually assumed (transformation always possible)
- An optimal extreme point of a (feasible and bounded) linear program can always be found in an extreme point of the feasible set

Integer linear optimization models

- In the tiny manufacturing model, the numbers of chairs and tables *must* be integers
- The data in this example is "cleared up" such that the extreme points of the feasible set have integer values
- What if the extreme points have fractional values?

maximize	Ζ	=	1600 <i>x</i> 1	+	$1000x_2$		
subject to			$2x_1$	+	<i>x</i> ₂	\leq	5
			$2x_1$	+	$2x_2$	\leq	9
					x_1, x_2	\geq	0

 $\Rightarrow \quad x_1^* = \frac{1}{2}, x_2^* = 4 \quad \Rightarrow \quad \text{Integer requirements are needed}$

 \Rightarrow Integer linear optimization models and methods

Discrete/integer/binary modelling

- A variable is called *discrete* if it can take only a countable set of values, e.g.,
 - Continuous variable: $x \in [0, 8] \iff 0 \le x \le 8$
 - Discrete variable: $x \in \{0, 4.4, 5.2, 8.0\}$
 - *Integer* variable: $x \in \{0, 1, 2, \ldots\}$
- A *binary* variable can only take the values 0 or 1, i.e., all or nothing
 - E.g., a wind-mill can produce electricity only if it is built
 - Let y = 1 if the mill is built, otherwise y = 0
 - Capacity of a mill: C
 - Production $x \leq Cy$ (also limited by wind force etc.)
- In general, models with only continuous variables are more tractable than models with integrality/discrete requirements on the variables, but there are important exceptions!
- More about this to come in this course