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Maximum flow models (Ch. 8.6)

A district heating network

Energy—in the form of hot water—is transported through a
pipeline network with several sources and many destinations

The network has several branches and junctions

Pipe segment (i , j) has a maximum capacity of Kij units of
flow per time unit

A pipe can be one- or bidirectional

What is the maximum total amount of flow per time unit
through this network?

There may also be constraints on the temperature of the water
at different points in the network

Another application of the maximum flow model: evacuation
of buildings (also time dynamics)
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LP model for maximum flow problems

Let xij denote the amount of flow through pipe segment (i , j)
(flow direction i → j)

Let v denote the total flow from the source (node s) to the
destination (node t)

Graph: G = (V ,A,K) (nodes, directed arcs, arc capacities)
(an undirected edge is represented by two directed arcs)

maxx,v v , maximize total flow from t to s

s.t. −
∑

j:(s,j)∈A

xsj = −v , flow balance, node s

∑

i :(i ,t)∈A

xit = v , flow balance, node t

∑

i :(i ,k)∈A

xik −
∑

j:(k,j)∈A

xkj = 0, k ∈ V \ {s, t} flow balance, node k

xij ≤ Kij , (i , j) ∈ A capacity, arc (i , j)
xij ≥ 0, (i , j) ∈ A nonnegative flow

[ Draw!! ]
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A solution method for maximum flow problems

(Edmonds & Karp, 1972)

1 Let k := 0, v0 := 0, x0

ij := 0, and u0

ij := Kij , (i , j) ∈ A.

2 Find a maximum capacity path Pk ⊂ A from s to t (modified
shortest path algorithm). The capacity of Pk is
ûk := min

{

min
{

ukij
∣

∣ (i , j) ∈ Pk
}

;min
{

xkij
∣

∣ ( j , i) ∈ Pk
}}

.

If ûk = 0, go to step 4.

3 Update the flows xk+1

ij :=







xkij + ûk , if (i , j) ∈ Pk ,

xkij − ûk , if ( j , i) ∈ Pk ,

xkij , otherwise,

the capacities uk+1

ij :=







ukij − ûk , if (i , j) ∈ Pk ,

ukij + ûk , if ( j , i) ∈ Pk ,

ukij , otherwise,

and the total flow vk+1 :=vk + ûk . Let k :=k+1, go to step 2.
4 The maximum total flow equals vk .

The flow solution is given by xkij , (i , j) ∈ A. [Draw!]
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LP dual of the maximum flow model

Primal
maxx,v v ,

s.t. −
∑

j:(s, j)∈A

xsj +v = 0,

∑

i :(i ,t)∈A

xit −v = 0,

∑

i :(i ,k)∈A

xik −
∑

j:(k, j)∈A

xkj = 0, k ∈ V \ {s, t}

0 ≤ xij ≤ Kij , (i , j) ∈ A

Dual

minπ,γ
∑

(i ,j)∈A

Kijγij ,

s.t. −πi +πj +γij ≥ 0, (i , j) ∈ A

−πt +πs = 1,
πk free, k ∈ V ,

γij ≥ 0, (i , j) ∈ A

[Draw !!]
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Maximum flow – Minimum cut theorem

An (s, t)-cut is a set of arcs which—when deleted—interrupt
all flow in the network between the source s and the sink t

The cut capacity equals the sum of capacities on all the
forward arcs through the (s, t)-cut

Finding the minimum (s, t)-cut is equivalent to solving the
dual of the maximum flow problem

Theorem (Weak duality)

(i) Each feasible flow xij , (i , j) ∈ A, yields a lower bound on v∗

(ii) The capacity of each (s, t)-cut is an upper bound on v∗

Theorem (Strong duality)

value of maximum flow = capacity of minimum cut
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Optimal dual solution – minimum cut

Optimal values of the dual variables

γij =

{

1, if arc (i , j) passes through the minimum cut,
0, otherwise.

πk =







1, if node k can be reached (by more flow units)
from node s,

0, otherwise.

How is the minimum cut found using the Edmonds & Karp
algorithm?
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General minimum cost network flow problems

A network consist of a set N of nodes linked by a set A of arcs

A distance/cost cij is associated with each arc

Each node i in the network has a net demand di

Each arc carries an (unknown) amount of flow xij that is
restricted by a maximum capacity uij ∈ [0,∞] and a minimum
capacity ℓij ∈ [0, uij ]

The flow through each node must be balanced

A network flow problem can be formulated as a linear program

All extreme points of the feasible set are integral – due to the
unimodularity property of the constraint matrix (see Ch. 8.6.3)
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Minimum cost flow in a general network: Example

Two paper mills: Holmsund and Tuna

Three saw mills: Silje, Graninge and Lunden

Two storage terminals: Norrstig and Mellansel

Facility Supply (m3) Demand (m3)

Silje 2400
Graninge 1800
Lunden 1400
Holmsund 3500
Tuna 2100

S

L

G

H

T

N

M
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Minimum cost flow in a general network: Example

Transportation opportunities

From To Price/m3 Capacity (m3)

Silje Norrstig 20 900
Silje Mellansel 26 1000
Silje Holmsund 45 1100
Graninge Norrstig 8 700
Graninge Mellansel 14 900
Graninge Holmsund 37 600
Graninge Tuna 22 600
Lunden Mellansel 32 600
Lunden Tuna 23 1000
Norrstig Holmsund 11 1800
Norrstig Mellansel 9 1800
Mellansel Norrstig 9 1800
Mellansel Tuna 9 1800
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Minimum cost flow in a general network: Example

Objective: Minimize transportation costs

Satisfy demand

Do not exceed the supply

Do not exceed the transportation capacities

An optimal solution

S

L

G

H

T

N

M
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−1800

−1400
2100

35001100
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400

400
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Minimum cost flow in a general network: Example

minx z := 20xSN + 26xSM + 45xSH + 8xGN + 14xGM
+37xGH + 22xGT + 32xLM + 23xLT + 11xNH
+9xNM + 9xMN + 9xMT

subject to −xSN − xSM − xSH = −2400 (Silje)
−xGN − xGM − xGH − xGT = −1800 (Graninge)

−xLM − xLT = −1400 (Lunden)
xSN + xGN + xMN − xNM − xNH = 0 (Norrstig)

xSM + xLM + xGM + xNM − xMN − xMT = 0 (Mellansel)
xSH + xGH + xNH = 3500 (Holmsund)
xGT + xLT + xMT = 2100 (Tuna)

0 ≤ xSN ≤ 900
0 ≤ xSM ≤ 1000
0 ≤ xSH ≤ 1100
0 ≤ xGN ≤ 700
0 ≤ xGM ≤ 900
0 ≤ xGH ≤ 600
0 ≤ xGT ≤ 600
0 ≤ xLM ≤ 600
0 ≤ xLT ≤ 1000
0 ≤ xNH ≤ 1800
0 ≤ xNM ≤ 1800
0 ≤ xMN ≤ 1800
0 ≤ xMT ≤ 1800

The columns Aj of the equality constraint matrix (Ax = b) have
one 1-element, one −1-element; the remaining elements are 0
⇒ the matrix A is totally unimodular
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Minimum cost flows in general networks

A network G = (N,A) with nodes N and arcs A, |N| = n

xij = flow through arc (i , j) ∈ A

ℓij and uij are lower and upper limits on xij

cij = cost per unit flow on arc (i , j)

di = demand in node i (negative demand = positive supply)

LP model

minx
∑

(i , j)∈A

cijxij ,

s.t.
∑

i :(i ,k)∈A

xik −
∑

j :(k, j)∈A

xkj = dk , k ∈ N,

ℓij ≤ xij ≤ uij , (i , j) ∈ A.
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Minimum cost flows in general networks: LP model and dual

The linear optimization model

minx
∑

(i , j)∈A

cijxij ,

s.t.
∑

i :(i ,k)∈A

xik −
∑

j :(k, j)∈A

xkj = dk , k ∈ N,

ℓij ≤ xij ≤ uij , (i , j) ∈ A.

Linear programming dual

maxy ,α,β
∑

k∈N

dkyk +
∑

(i , j)∈A

(

ℓijαij − uijβij
)

,

s.t. yj − yi + αij − βij = cij , (i , j) ∈ A,

αij , βij ≥ 0, (i , j) ∈ A.
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The simplex method for minimum cost network flows

(Ch. 8.7)

A solution is optimal if

the primal and dual solutions are feasible and

the complementarity conditions are fulfilled

Reduced costs

c ij = cij + yi − yj , (i , j) ∈ A

Complementary conditions, (i , j) ∈ A

αij(xij − ℓij) = 0

βij(uij − xij) = 0

xij(c ij − αij + βij ) = 0
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The simplex method for minimum cost network flows

Feasibility condition

Assume that ℓij < uij holds for all (i , j) ∈ A

A feasible solution xij , (i , j) ∈ A, is optimal if the following hold

xij = uij ⇒ αij = 0 ⇒ Reduced cost: c ij = −βij ≤ 0

xij = ℓij ⇒ βij = 0 ⇒ Reduced cost: c ij = αij ≥ 0

ℓij < xij < uij ⇒ αij = βij = 0 ⇒ Reduced cost: c ij = 0

A basic solution is characterized by the following

If ℓij < xij < uij ⇒ the arc (i , j) is in the basis
⇔ xij is a basic variable

If xij = ℓij or xij = uij ⇒ the arc (i , j) may be in the basis
⇔ xij may be a basic variable

The n − 1 basic arcs form a spanning tree in G (one primal
equation is a linear combination of the rest – can be removed)

Lecture 12 Linear and integer optimization with applications 16/17



The simplex method for minimum cost flows

1 Find a feasible solution (a spanning tree of basic arcs)a

2 Compute reduced costs c ij = cij + yi − yj for all non-basic arcs
3 Check termination criteria: If, for every arc (i , j),

either: c ij = 0 and ℓij ≤ xij ≤ uij ,
or: c ij < 0 and xij = uij ,
or: c ij > 0 and xij = ℓij

hold, then STOP. xij , (i , j) ∈ A form an optimal solution
4 Entering variable (arc): (p, q) ∈ arg max(i ,j)∈I |c ij |

I = the set of non-basic arcs not fulfilling the conditions in 3
5 Leaving variable (arc): Send flow along the cycle defined by

the current basis (spanning tree) and the arc (p, q). The arc
(i , j) whose flow xij first reaches uij or ℓij leaves the basis

6 Go to step 2

aFor the basic arcs (variables), the reduced costs c̄ij := cij + yi − yj = 0.
Letting y1 := 0 the values of yi , i ∈ N, are then given by these equalities.
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