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Maximum flow models (Ch. 8.6)

A district heating network

@ Energy—in the form of hot water—is transported through a
pipeline network with several sources and many destinations

@ The network has several branches and junctions

@ Pipe segment (i, /) has a maximum capacity of Kj; units of
flow per time unit

@ A pipe can be one- or bidirectional

@ What is the maximum total amount of flow per time unit
through this network?

@ There may also be constraints on the temperature of the water
at different points in the network

@ Another application of the maximum flow model: evacuation
of buildings (also time dynamics)
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LP model for maximum flow problems

@ Let x;; denote the amount of flow through pipe segment (i, )
(flow direction i — j)

@ Let v denote the total flow from the source (node s) to the
destination (node t)

@ Graph: G = (V,A,K) (nodes, directed arcs, arc capacities)
(an undirected edge is represented by two directed arcs)

mMaxy,y v, maximize total flow from t to s

s.t. - Z X = —V, flow balance, node s
Ji(s.j)EA

Xit = V, flow balance, node t
i:(i, t)EA

Z Xik — Z X =0, ke V\{s,t} flow balance, node k
i(i,k)EA Ji(k,j)EA

xj < Kj, (i,j)eA capacity, arc (i, )

xjj >0, (i,j))e A nonnegative flow

Draw!!
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A solution method for maximum flow problems

(Edmonds & Karp, 1972)

Q Let k:=0,v%:=0, xg- =0, and ug- = Kij, (i,)) € A
© Find a maximum capacity path PX C A from s to t (modified
shortest path algorithm). The capacity of P¥ is
g := min {min {u,’j (i,j) € P*}; min {x,j‘ (j.i) € P<}}.
If 0% =0, go to step 4.
x4+ ok, if (i,)) € Pk,

1
© Update the flows x;* := x,{{z - u" if (j,i) € Pk,
X, otherwise,
ok =0 (7.j) € P
the capacities u,ff“l = u,Z + ok, if (j, i) € Pk,
us otherwise,

and the total flow vATl:=vk + 0K Let k:=k+1, go to step 2.
© The maximum total flow equals v.
The flow solution is given by xlj‘ (i,)) € A. [Draw!]
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LP dual of the maximum flow model

max, v,
s.t. = Z xsi +v =0,
Jji(s,j)EA
Z xi —v =0,
i:(i,t)€A
doxk— Y xg =0, ke V\{s t}
i(i,k)EA Ji(k,j)eA

0<x; <Kj (ij)eA

minﬂ-,fy Z K;j’y,'j,
(i, j)EA
s.t. —mj 4+ +7; > 0, (i,j)eA
— T +7s =1,
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Maximum flow — Minimum cut theorem

@ An (s, t)-cutis a set of arcs which—when deleted—interrupt
all flow in the network between the source s and the sink t

@ The cut capacity equals the sum of capacities on all the
forward arcs through the (s, t)-cut

@ Finding the minimum (s, t)-cut is equivalent to solving the
dual of the maximum flow problem

Theorem (Weak duality)

(i) Each feasible flow x;j, (i,j) € A, yields a lower bound on v*
(ii) The capacity of each (s, t)-cut is an upper bound on v*

Theorem (Strong duality)

value of maximum flow = capacity of minimum cut
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Optimal dual solution — minimum cut

Optimal values of the dual variables

[ 1, ifarc (i,j) passes through the minimum cut,
Vi = { 0, otherwise.
1, if node k can be reached (by more flow units)
Ty = from node s,
0, otherwise.

How is the minimum cut found using the Edmonds & Karp
algorithm?
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General minimum cost network flow problems

A network consist of a set N of nodes linked by a set A of arcs

(]

A distance/cost cj; is associated with each arc
@ Each node / in the network has a net demand d;

@ Each arc carries an (unknown) amount of flow x;; that is
restricted by a maximum capacity uj; € [0, 00] and a minimum
capacity £;; € [0, ujj]

@ The flow through each node must be balanced
@ A network flow problem can be formulated as a linear program

@ All extreme points of the feasible set are integral — due to the
unimodularity property of the constraint matrix (see Ch. 8.6.3)

v
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Minimum cost flow in a general network: Example

@ Two paper mills: Holmsund and Tuna
@ Three saw mills: Silje, Graninge and Lunden

@ Two storage terminals: Norrstig and Mellansel

Facility ~ Supply (m3®)  Demand (m3)

Silje 2400
Graninge 1800
Lunden 1400
Holmsund 3500
Tuna 2100
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Minimum cost flow in a general network: Example

Transportation opportunities

From To Price/m3 Capacity (m3)
Silje Norrstig 20 900
Silje Mellansel 26 1000
Silje Holmsund 45 1100
Graninge  Norrstig 8 700
Graninge Mellansel 14 900
Graninge Holmsund 37 600
Graninge Tuna 22 600
Lunden Mellansel 32 600
Lunden Tuna 23 1000
Norrstig  Holmsund 11 1800
Norrstig ~ Mellansel 9 1800
Mellansel Norrstig 9 1800
Mellansel Tuna 9 1800
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Minimum cost flow in a general network: Example

@ Objective: Minimize transportation costs
@ Satisfy demand
@ Do not exceed the supply

@ Do not exceed the transportation capacities

An optimal solution

-2400
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Minimum cost flow in a general network: Example

miny z :=  20xgy + 26xgp) + 45xsy + 8xgy + 14xgy
+37x6H + 22x6T + 32X + 23X, 7 + 11lxpy
+9xym + Oxun + IxpT

subject to —XSN — XSM — XSH —2400 (Silje)
—XGN — XGM — XGH — XGT —1800 (Graninge)
—XLM — XLT —1400 (Lunden)

0 (Norrstig)
0 (Mellansel)
3500 (Holmsund)

XsN + XGN + XMN — XNM — XNH
xsm + Xem + X6m + XM — XMN — XMT
XSH + XGH + XNH

XGT + X7 + xyT = 2100 (Tuna)
0 < xsy £ 900
0 < xeu < 1000
0 < xeq < 1100
0 < xey < 700
0 < xoy < 900
0 < xeg < 600
0 < xer < 600
0 < xm < 600
0 < x7 < 1000
0 < xyy < 1800
0 < xyy < 1800
0 < xyy < 1800
0 < xyr < 1800

The columns A; of the equality constraint matrix (Ax = b) have
one l-element, one —1-element; the remaining elements are 0
= the matrix A is totally unimodular
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Minimum cost flows in general networks

@ A network G = (N, A) with nodes N and arcs A, |[N| =n
o x; = flow through arc (i,j) € A
@ (jj and ujj are lower and upper limits on x;;

@ ¢jj = cost per unit flow on arc ()

@ d; = demand in node i (negative demand = positive supply)

LP model

min, > CiiXij,
(i, j)EA
s.t. Z Xk — Z Xkj = d, ke N,
i:(i,k)eA Ji(k,j)EA
ti < xj <uy,  (ij) €A
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Minimum cost flows in general networks: LP model and dual

The linear optimization model

miny > G,
(i, J)eA
s.t. Z Xk — Z Xkj = d, keN,
i:(i,k)€A Ji(k,j)EA
by < xij<uy,  (i,j) €A

Linear programming dual

maxyas > dvk + 2 ( Lo — uBij ),
keN (i,j)EA

s.t. Yj —Yi + o — Bij = ¢, (i,)) € A,
aj , Bij =0, (i,J) € A.
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The simplex method for minimum cost network flows

(Ch. 8.7)

A solution is optimal if
@ the primal and dual solutions are feasible and

@ the complementarity conditions are fulfilled

Reduced costs

Cij = Cij T Yi — Y, (i,j)eA

Complementary conditions, (i,j) € A

o ajj(xj — ) =
o Bij(uj — x5) =
® x;(Cjj — cjj + Bjj) = 0
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The simplex method for minimum cost network flows

Feasibility condition
Assume that ¢;; < uj; holds for all (i,)) € A

A feasible solution xjj, (i, /) € A, is optimal if the following hold

® xj = uj = ajj =0 = Reduced cost: T;; = —; <0
o xjj =Lj = fjj=0 = Reduced cost: €jj = ajj > 0
o Ly < xj <uwyj = = f;=0 = Reduced cost: ¢j; =0

A basic solution is characterized by the following

o If ;i < xjj < ujj = the arc (i,j) is in the basis
& Xjj is a basic variable

o If x;j = ¢jj or xjj = ujj = the arc (i,j) may be in the basis
& xjj may be a basic variable

@ The n— 1 basic arcs form a spanning tree in G (one primal
equation is a linear combination of the rest — can be removed)
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The simplex method for minimum cost flows

Find a feasible solution (a spanning tree of basic arcs)?
Compute reduced costs C;; = ¢jj + y; — y; for all non-basic arcs
Check termination criteria: If, for every arc (i, j),
o either: ¢;; = 0 and £ < x;; < uj,
e or: ¢; < 0 and x; = uj,
@ or: E,-j>0and X,'j:&'j
hold, then STOP. x;;, (i,/) € A form an optimal solution
Q Entering variable (arc): (p, q) € arg max; je/ [l
| = the set of non-basic arcs not fulfilling the conditions in 3
© Leaving variable (arc): Send flow along the cycle defined by
the current basis (spanning tree) and the arc (p, g). The arc
(i,J) whose flow x;; first reaches uj; or ¢;; leaves the basis
Q Go to step 2

000

?For the basic arcs (variables), the reduced costs ¢ := ¢jj + yi — y; = 0.
Letting y1 := 0 the values of y;, i € N, are then given by these equalities.
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