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Applied optimization — multiple objectives

@ Many practical optimization problems have several objectives
which may be in conflict

@ Some goals cannot be reduced to a common scale of
cost/profit = trade-offs must be addressed

@ Examples
o Financial investments — risk vs. return
o Engine design — efficiency vs. NO, vs. soot
s Wind power production — investment vs. operation (Ass 3a)
o Electricity generation — costs vs. emissions (Ass 3b)

Literature on multiple objectives’ optimization

Copies from the book Optimization in Operations Research by R.L.
Rardin (1998) pp. 373-387, handed out (on paper, copies kept
outside Ann-Brith's office, room MV:L2087)
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Optimization of multiple objectives

@ Consider the minimization of f(x) := (x — 1)? subject to
0<x<3

@ Optimal solution: x* =1 s
(since the function f is convex)
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Optimization of multiple objectives

Consider then two objectives

minimize [f1(x); f2(x)]

subject to 0 < x < 3 ‘

where

f(x) = (x — 1)2, f(x) = 3(x — 2)2 )

@ How can an optimal solution be 2

defined? 5

A solution is Pareto optimal if no other f

feasible solution has a better value in all 05
objectives

@ All points x € [1,2] are Pareto
optimal
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Pareto optimal solutions in the objective space

@ minimize [fi(x); fo(x)] subject to 0 < x <3
where f1(x) := (x — 1)? and f(x) := 3(x — 2)?

@ A solution is Pareto optimal if no other feasible solution has a
better value in all objectives

Objective space

4 —— Feasible solutions
10 —— Pareto optimal solutions

as A

@ Pareto optima < nondominated points < efficient frontier
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Efficient points

@ Consider a bi-objective linear
program:

maximize 3x1 + xo

maximize —x1 4 2xo

subject to x1+x < 4
0<x <3
0<x <3

@ The solutions in the green cone, defined by

{xeR2 X = (g) + A1 <_31> + X2 (i) ;)\1,)\2>0}, are

better than the solution (2,2) w.r.t. both objectives
@ The point x = (2,2) is an efficient, or non-dominated, solution
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Dominated points

maximize 3x1 + xo

maximize —x1 + 2x0

subject to x1+x <4
0<x<3
0<x <3

@ The point x = (3,0) is dominated by the solutions in the
green cone

@ Feasible solutions exist that are better w.r.t. both objectives
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Dominated points

maximize 3x1 + xo

maximize —x1 + 2x0

subject to x1+x <4
0<x<3
0<x <3

@ The point x = (1,1) is dominated by the solutions in the
green cone

@ Feasible solutions exist that are better w.r.t. both objectives
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The efficient frontier—the set of Pareto optimal solutions

maximize 3x1 + xo

maximize —x1 + 2x0

subject to x1+x <4
0<x3 <3
0<x <3

{x€§R2 X =
{x6%2

Note that this is not a convex set!
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The Pareto optimal set in the objective space

maximize f(x) :=3x1 + x2 ’
maximize h(x) := —x1 + 2x i
subject to x1+x0 <4 34
0<x <3 <
0<x <3 4

@ The set of Pareto optimal objective values is given by

a8 0-a(() 0sos1jU
)

{(ﬂ,fz)eéRz f:a<§)+(1—a)<g> <a<1

{(ﬂ,fz) € R?
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Mapping from the decision space to the objective space

maximize [3x1 + x2; —x1 + 2x2]
subjectto x1+x <4, 0<x<3, 0<x<3
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Solutions methods for multiobjective optimization

Construct the efficient frontier by treating one objective as a
constraint and optimizing for the other

maximize 3x1 + xo

subject to —x3 +2x0 > ¢
x1+x <4
0<x3<3
0<x <3

@ Here, let € € [-1,6]. Why?

@ What if the number of objectives is > 37

@ How many single objective linear programs do we have to
solve for seven objectives and ten values of ¢ for each
objective fi, k=1,...,77

@ It is called the e-constraints method
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Solution methods: weighted sums of objectives

@ Give each maximization (minimization) objective a positive
(negative) weight
@ Solve a single objective maximization problem
= Yields an efficient solution
@ Drawback 1: Well spread weights do not necessarily produce
solutions that are well spread on the efficient frontier
Ex: {$.3,1,2,10}

@ Drawback 2: If the objectives are
non-concave (maximization) or if the ™
feasible set is non-convex, as, e.g.,
integrality constrained, then not all =,
points on the efficient frontier may

be possible to detect using weighted — «
sums of objectives

Too 0 w0 w0 o 6w ot
f1(x

Lecture 13 Linear and integer optimization with applications

13/19



The efficient frontier in the case of non-convexity

A bi-objective binary linear program

maximize f(x) :=3x1 +x2 — x3

maximize f(x) :=x1 — x2 + 3x3
subjectto  x€X:={x€B*| xx+x+x <2}

i (BRGRBRORGRORO)

A(X)={0,-1,1,3,0,2,4} and f(X)={0,3,—1,1,2,4,0}

Then,

4
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The efficient frontier in the case of non-convexity




The efficient frontier in the case of non-convexity

Solution by weighted maximization: Let o € [0, 1]

af(x)+ (1 —a)hk(x) = alBx1+x —x3)+ (1 —a)(xa—x +3x3)
= (Qa+1)x + (2a —1)x + (3 — 4a)x3

Resulting binary linear program:

maximize  (2a+ 1)x; + (2a — 1)x2 + (3 — 4a)x3
subject to x € X

(]

a€f0,2) = x*=(1,0,1)T & f* = (2,4)T
a=3=x"€{(1,0,1)T,(1,1,0)T} & f* € {(2,4)T, (4,0)T}
a€(3,1] = x* =(1,1,0)T & f* = (4,0)T

(]

(]

But the Pareto-optimal solution x* = (1,0,0)" with
f* = (3,1)T cannot be found using the weighted sums method

(]

What would the e-contraints method yield?

-
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Solution methods: e-constraints

@ Consider solving the previous example using the e-constraint
method

The resulting one-objective binary linear program

maximizey f(x) :=3x1+x2 — x3
subject to h(x):=x1—x2+3x3>¢
x€X:z{X€IB%3| x1+xo+x3<2}

@ Then vary ¢ within relevant bounds (which are these?)
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Solution methods: soft constraints

Consider the multiobjective optimization problem to

maximizey [f1(x); ...; fx(x)] subject to x € X

@ Define a target value ty and a deficiency variable d, > 0 for
each objective f
@ Construct a soft constraint for each objective:

maximize fy(x) = f(xX)+di>t, k=1,...,K

Minimize the sum of deficiencies: (**)
minimizey 4 Z di
keK

subject to (X)) +de > t, k=1,....K
d>0, k=1,....K
xe X |

@ When is an optimum of (**) an efficient solution?  [Draw!!]
@ Important: Find first a common scale for fi, k =1,..., K
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Normalizing the objectives

Find a common scale for fi, k=1,..., K

@ Consider the multiobjective optimization problem to

maximizey [f1(X); ...; fk(x)] subject to x € X

@ Define

fi(x) — kmin

W) = ey k=LK,

here fmax .— f fmin .— min {f,
where £ :=max {fi(x)} and £ :=min {fi(x)}

@ Then, f(x) € [0,1] for all x € X, so that the functions £ can
be compared on a common scale
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