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Applied optimization — multiple objectives

Many practical optimization problems have several objectives
which may be in conflict

Some goals cannot be reduced to a common scale of
cost/profit ⇒ trade-offs must be addressed

Examples

Financial investments — risk vs. return

Engine design — efficiency vs. NOx vs. soot

Wind power production — investment vs. operation (Ass 3a)

Electricity generation — costs vs. emissions (Ass 3b)

Literature on multiple objectives’ optimization

Copies from the book Optimization in Operations Research by R.L.
Rardin (1998) pp. 373–387, handed out (on paper, copies kept
outside Ann-Brith’s office, room MV:L2087)
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Optimization of multiple objectives

Consider the minimization of f (x) := (x − 1)2 subject to
0 ≤ x ≤ 3

Optimal solution: x∗ = 1
(since the function f is convex)
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Optimization of multiple objectives

Consider then two objectives

minimize [f1(x); f2(x)]

subject to 0 ≤ x ≤ 3

where

f1(x) := (x − 1)2, f2(x) := 3(x − 2)2

How can an optimal solution be
defined?

A solution is Pareto optimal if no other

feasible solution has a better value in all

objectives

All points x ∈ [1, 2] are Pareto
optimal
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Pareto optimal solutions in the objective space

minimize [f1(x); f2(x)] subject to 0 ≤ x ≤ 3
where f1(x) := (x − 1)2 and f2(x) := 3(x − 2)2

A solution is Pareto optimal if no other feasible solution has a
better value in all objectives
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Pareto optima ⇔ nondominated points ⇔ efficient frontier
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Efficient points

Consider a bi-objective linear
program:

maximize 3x1 + x2

maximize −x1 + 2x2

subject to x1 + x2 ≤ 4

0 ≤ x1 ≤ 3

0 ≤ x2 ≤ 3
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The solutions in the green cone, defined by
{
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, are

better than the solution (2, 2) w.r.t. both objectives

The point x = (2, 2) is an efficient, or non-dominated, solution
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Dominated points

maximize 3x1 + x2

maximize −x1 + 2x2

subject to x1 + x2 ≤ 4

0 ≤ x1 ≤ 3

0 ≤ x2 ≤ 3
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The point x = (3, 0) is dominated by the solutions in the
green cone

Feasible solutions exist that are better w.r.t. both objectives
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Dominated points

maximize 3x1 + x2

maximize −x1 + 2x2

subject to x1 + x2 ≤ 4

0 ≤ x1 ≤ 3

0 ≤ x2 ≤ 3
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The point x = (1, 1) is dominated by the solutions in the
green cone

Feasible solutions exist that are better w.r.t. both objectives
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The efficient frontier—the set of Pareto optimal solutions

maximize 3x1 + x2

maximize −x1 + 2x2

subject to x1 + x2 ≤ 4

0 ≤ x1 ≤ 3

0 ≤ x2 ≤ 3
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The set of efficient solutions is given by
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Note that this is not a convex set!
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The Pareto optimal set in the objective space

maximize f1(x) := 3x1 + x2

maximize f2(x) := −x1 + 2x2

subject to x1 + x2 ≤ 4

0 ≤ x1 ≤ 3

0 ≤ x2 ≤ 3
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The set of Pareto optimal objective values is given by
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Mapping from the decision space to the objective space

maximize [3x1 + x2; −x1 + 2x2]

subject to x1 + x2 ≤ 4, 0 ≤ x1 ≤ 3, 0 ≤ x2 ≤ 3

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

x1

x
2

0 2 4 6 8 10 12
−4

−2

0

2

4

6

8

f1(x)

f 2
(x
)

Lecture 13 Linear and integer optimization with applications 11/19



Solutions methods for multiobjective optimization

Construct the efficient frontier by treating one objective as a
constraint and optimizing for the other

maximize 3x1 + x2

subject to −x1 + 2x2 ≥ ε

x1 + x2 ≤ 4

0 ≤ x1 ≤ 3

0 ≤ x2 ≤ 3

Here, let ε ∈ [−1, 6]. Why?

What if the number of objectives is ≥ 3?

How many single objective linear programs do we have to
solve for seven objectives and ten values of εk for each
objective fk , k = 1, . . . , 7?

It is called the ε-constraints method
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Solution methods: weighted sums of objectives

Give each maximization (minimization) objective a positive
(negative) weight
Solve a single objective maximization problem

⇒ Yields an efficient solution
Drawback 1: Well spread weights do not necessarily produce
solutions that are well spread on the efficient frontier

Ex:
{

1
10 ,

1
2 , 1, 2, 10

}

Drawback 2: If the objectives are
non-concave (maximization) or if the
feasible set is non-convex, as, e.g.,
integrality constrained, then not all

points on the efficient frontier may

be possible to detect using weighted

sums of objectives
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The efficient frontier in the case of non-convexity

A bi-objective binary linear program

maximize f1(x) := 3x1 + x2 − x3

maximize f2(x) := x1 − x2 + 3x3

subject to x ∈ X :=
{

x ∈ B
3
∣

∣ x1 + x2 + x3 ≤ 2
}

Then,
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,

f1(X ) = {0,−1, 1, 3, 0, 2, 4} and f2(X ) = {0, 3,−1, 1, 2, 4, 0}
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The efficient frontier in the case of non-convexity
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The efficient frontier in the case of non-convexity
Solution by weighted maximization: Let α ∈ [0, 1]

αf1(x) + (1− α)f2(x) = α(3x1 + x2 − x3) + (1 − α)(x1 − x2 + 3x3)

= (2α+ 1)x1 + (2α− 1)x2 + (3− 4α)x3

Resulting binary linear program:

maximize (2α + 1)x1 + (2α − 1)x2 + (3− 4α)x3

subject to x ∈ X

α ∈ [0, 23) =⇒ x∗ = (1, 0, 1)T & f∗ = (2, 4)T

α = 2
3 ⇒ x∗ ∈ {(1, 0, 1)T , (1, 1, 0)T} & f∗ ∈ {(2, 4)T, (4, 0)T}

α ∈ (23 , 1] =⇒ x∗ = (1, 1, 0)T & f∗ = (4, 0)T

But the Pareto-optimal solution x∗ = (1, 0, 0)T with
f∗ = (3, 1)T cannot be found using the weighted sums method

What would the ε-contraints method yield?
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Solution methods: ε-constraints

Consider solving the previous example using the ε-constraint
method

The resulting one-objective binary linear program

maximizex f1(x) := 3x1 + x2 − x3

subject to f2(x) := x1 − x2 + 3x3 ≥ ε

x ∈ X :=
{

x ∈ B
3
∣

∣ x1 + x2 + x3 ≤ 2
}

Then vary ε within relevant bounds (which are these?)
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Solution methods: soft constraints

Consider the multiobjective optimization problem to

maximizex [f1(x); . . . ; fK (x)] subject to x ∈ X

Define a target value tk and a deficiency variable dk ≥ 0 for
each objective fk
Construct a soft constraint for each objective:

maximize fk(x) ⇒ fk(x) + dk ≥ tk , k = 1, . . . ,K

Minimize the sum of deficiencies: (**)

minimizex,d
∑

k∈K

dk

subject to fk(x) + dk ≥ tk , k = 1, . . . ,K

dk ≥ 0, k = 1, . . . ,K

x ∈ X

When is an optimum of (**) an efficient solution? [Draw!!]
Important: Find first a common scale for fk , k = 1, . . . ,K
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Normalizing the objectives

Find a common scale for fk , k = 1, . . . ,K

Consider the multiobjective optimization problem to

maximizex [f1(x); . . . ; fK (x)] subject to x ∈ X

Define

f̃k(x) :=
fk(x)− f min

k

f max
k

− f min
k

, k = 1, . . . ,K ,

where f max
k

:= max
x∈X

{

fk(x)
}

and f min
k

:= min
x∈X

{

fk(x)
}

Then, f̃k(x) ∈ [0, 1] for all x ∈ X , so that the functions f̃k can
be compared on a common scale
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