MVE165/MMG631 Linear and integer optimization with applications Lecture 13 Multiobjective optimization

Ann-Brith Strömberg

2019-05-14

Applied optimization — multiple objectives

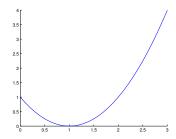
- Many practical optimization problems have several objectives which may be in conflict
- Some goals cannot be reduced to a common scale of cost/profit ⇒ trade-offs must be addressed
- Examples
 - Financial investments risk vs. return
 - Engine design efficiency vs. NO_x vs. soot
 - Wind power production investment vs. operation (Ass 3a)
 - Electricity generation costs vs. emissions (Ass 3b)

Literature on multiple objectives' optimization

Copies from the book *Optimization in Operations Research* by R.L. Rardin (1998) pp. 373–387, handed out (on paper, copies kept outside Ann-Brith's office, room MV:L2087)

Optimization of multiple objectives

- Consider the minimization of f(x) := (x − 1)² subject to 0 ≤ x ≤ 3
- Optimal solution: x* = 1 (since the function f is convex)



Consider then two objectives

minimize $[f_1(x); f_2(x)]$

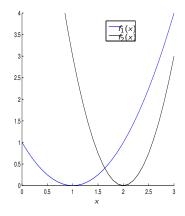
subject to $0 \le x \le 3$

where

$$f_1(x) := (x-1)^2, \ f_2(x) := 3(x-2)^2$$

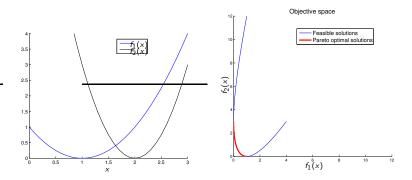
• How can an optimal solution be defined?

A solution is *Pareto optimal* if *no other* feasible solution has a better value in *all* objectives



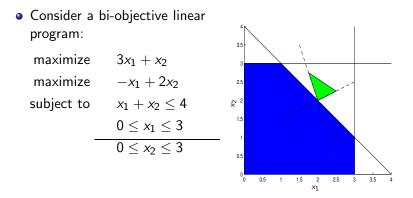
Pareto optimal solutions in the objective space

- minimize $[f_1(x); f_2(x)]$ subject to $0 \le x \le 3$ where $f_1(x) := (x - 1)^2$ and $f_2(x) := 3(x - 2)^2$
- A solution is *Pareto optimal* if *no other* feasible solution has a better value in *all* objectives



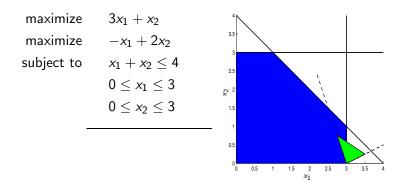
Pareto optima ⇔ nondominated points ⇔ efficient frontier

Efficient points



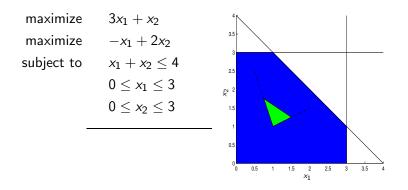
The solutions in the green cone, defined by {x ∈ ℝ² | x = (²/₂) + λ₁ (⁻¹/₃) + λ₂ (²/₁); λ₁, λ₂ > 0}, are
better than the solution (2,2) w.r.t. both objectives
The point x = (2,2) is an efficient, or non-dominated, solution

Dominated points



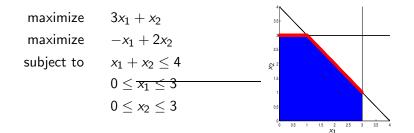
- The point *x* = (3,0) is *dominated* by the solutions in the green cone
- Feasible solutions exist that are better w.r.t. both objectives

Dominated points



- The point x = (1, 1) is dominated by the solutions in the green cone
- Feasible solutions exist that are better w.r.t. both objectives

The efficient frontier—the set of Pareto optimal solutions

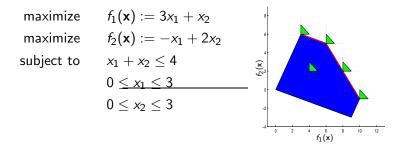


• The set of efficient solutions is given by

$$\begin{cases} \mathbf{x} \in \Re^2 \ \middle| \ \mathbf{x} = \alpha \begin{pmatrix} 3 \\ 1 \end{pmatrix} + (1 - \alpha) \begin{pmatrix} 1 \\ 3 \end{pmatrix}, 0 \le \alpha \le 1 \end{cases} \bigcup \\ \begin{cases} \mathbf{x} \in \Re^2 \ \middle| \ \mathbf{x} = \alpha \begin{pmatrix} 1 \\ 3 \end{pmatrix} + (1 - \alpha) \begin{pmatrix} 0 \\ 3 \end{pmatrix}, 0 \le \alpha \le 1 \end{cases}$$

Note that this is not a convex set!

The Pareto optimal set in the objective space

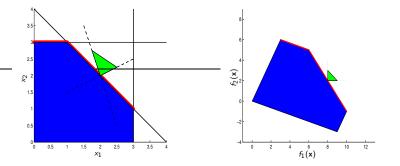


• The set of Pareto optimal objective values is given by

$$\begin{cases} (f_1, f_2) \in \Re^2 \ \middle| \ \mathbf{f} = \alpha \begin{pmatrix} 10 \\ -1 \end{pmatrix} + (1 - \alpha) \begin{pmatrix} 6 \\ 5 \end{pmatrix}, 0 \le \alpha \le 1 \end{cases} \bigcup \\ \begin{cases} (f_1, f_2) \in \Re^2 \ \middle| \ \mathbf{f} = \alpha \begin{pmatrix} 6 \\ 5 \end{pmatrix} + (1 - \alpha) \begin{pmatrix} 3 \\ 6 \end{pmatrix}, 0 \le \alpha \le 1 \end{cases} \end{cases}$$

Mapping from the decision space to the objective space

 $\begin{array}{ll} \text{maximize} & [3x_1+x_2; \; -x_1+2x_2] \\ \text{subject to} & x_1+x_2 \leq 4, \quad 0 \leq x_1 \leq 3, \quad 0 \leq x_2 \leq 3 \end{array}$



Construct the efficient frontier by treating one objective as a constraint and optimizing for the other

maximize $3x_1 + x_2$ subject to $-x_1 + 2x_2 \ge \varepsilon$ $x_1 + x_2 \le 4$ $0 \le x_1 \le 3$ $0 \le x_2 \le 3$

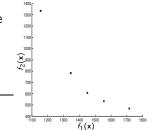
- Here, let $\varepsilon \in [-1, 6]$. Why?
- What if the number of objectives is ≥ 3 ?
- How many single objective linear programs do we have to solve for seven objectives and ten values of ε_k for each objective f_k, k = 1,...,7?
- It is called the ε-constraints method

Solution methods: weighted sums of objectives

- Give each maximization (minimization) objective a positive (negative) weight
- Solve a single objective maximization problem
- \Rightarrow Yields an efficient solution
 - Drawback 1: Well spread weights do not necessarily produce solutions that are well spread on the efficient frontier

Ex: $\left\{\frac{1}{10}, \frac{1}{2}, 1, 2, 10\right\}$

• Drawback 2: If the objectives are non-concave (maximization) or if the feasible set is non-convex, as, e.g., integrality constrained, then not all points on the efficient frontier may be possible to detect using weighted sums of objectives



A bi-objective binary linear program

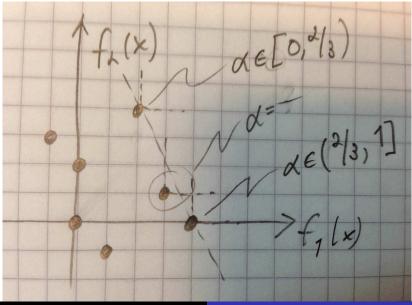
maximize	$f_1(\mathbf{x}) := 3x_1 + x_2 - x_3$
maximize	$f_2(\mathbf{x}) := x_1 - x_2 + 3x_3$
subject to	$\mathbf{x} \in X := \{ \mathbf{x} \in \mathbb{B}^3 \mid x_1 + x_2 + x_3 \le 2 \}$

Then,

$$X := \left\{ \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix} \right\},$$

$$f_1(X) = \{0, -1, 1, 3, 0, 2, 4\} \text{ and } f_2(X) = \{0, 3, -1, 1, 2, 4, 0\}$$

The efficient frontier in the case of non-convexity



Lecture 13 Li

The efficient frontier in the case of non-convexity Solution by weighted maximization: Let $\alpha \in [0, 1]$

$$\begin{aligned} \alpha f_1(\mathbf{x}) + (1-\alpha)f_2(\mathbf{x}) &= \alpha(3x_1 + x_2 - x_3) + (1-\alpha)(x_1 - x_2 + 3x_3) \\ &= (2\alpha + 1)x_1 + (2\alpha - 1)x_2 + (3 - 4\alpha)x_3 \end{aligned}$$

Resulting binary linear program:

$$\begin{array}{ll} \text{maximize} & (2\alpha+1)x_1+(2\alpha-1)x_2+(3-4\alpha)x_3\\ \text{subject to} & \textbf{x}\in X \end{array}$$

•
$$\alpha \in [0, \frac{2}{3}) \Longrightarrow \mathbf{x}^* = (1, 0, 1)^T \& \mathbf{f}^* = (2, 4)^T$$

• $\alpha = \frac{2}{3} \Rightarrow \mathbf{x}^* \in \{(1, 0, 1)^T, (1, 1, 0)^T\} \& \mathbf{f}^* \in \{(2, 4)^T, (4, 0)^T\}$
• $\alpha \in (\frac{2}{3}, 1] \Longrightarrow \mathbf{x}^* = (1, 1, 0)^T \& \mathbf{f}^* = (4, 0)^T$

- But the Pareto-optimal solution $\mathbf{x}^* = (1, 0, 0)^T$ with $\mathbf{f}^* = (3, 1)^T$ cannot be found using the weighted sums method
- What would the ε-contraints method yield?

Solution methods: ε -constraints

• Consider solving the previous example using the ε -constraint method

The resulting one-objective binary linear program

 $\begin{array}{ll} \text{maximize}_{\mathbf{x}} & f_1(\mathbf{x}) := 3x_1 + x_2 - x_3 \\ \text{subject to} & f_2(\mathbf{x}) := x_1 - x_2 + 3x_3 \ge \varepsilon \\ & \mathbf{x} \in X := \left\{ \left. \mathbf{x} \in \mathbb{B}^3 \right| \, x_1 + x_2 + x_3 \le 2 \right. \right\} \end{array}$

• Then vary ε within relevant bounds (which are these?)

Solution methods: soft constraints

Consider the multiobjective optimization problem to

maximize_x [$f_1(\mathbf{x})$; ...; $f_K(\mathbf{x})$] subject to $\mathbf{x} \in X$

- Define a target value t_k and a deficiency variable d_k ≥ 0 for each objective f_k
- Construct a *soft constraint* for each objective:

maximize $f_k(\mathbf{x})$	$\Rightarrow f_k(\mathbf{x}) + d_k \geq t_k, k = 1, \dots, K$		
Minimize the sum of deficiencies: (**)			
minimize _{x,d}	$\sum_{k\in K} d_k$		
subject to	$f_k(\mathbf{x}) + d_k \geq t_k, k = 1, \dots, K$		
	$d_k \geq 0, k = 1, \dots, K$		
	$\mathbf{x} \in X$		

• When is an optimum of (**) an efficient solution? [Draw!!]

• Important: Find first a common scale for f_k , k = 1, ..., K

Find a common scale for f_k , $k = 1, \ldots, K$

• Consider the multiobjective optimization problem to

 $\mathsf{maximize}_{\mathbf{x}} \; [\mathit{f}_1(\mathbf{x});\; \ldots;\; \mathit{f}_{\mathcal{K}}(\mathbf{x})] \; \; \mathsf{subject to} \; \; \mathbf{x} \in X$

Define

$$ilde{f}_k(\mathbf{x}) := rac{f_k(\mathbf{x}) - f_k^{\min}}{f_k^{\max} - f_k^{\min}}, \qquad k = 1, \dots, K,$$

where $f_k^{\max} := \max_{\mathbf{x} \in X} \{f_k(\mathbf{x})\}$ and $f_k^{\min} := \min_{\mathbf{x} \in X} \{f_k(\mathbf{x})\}$ • Then, $\tilde{f}_k(\mathbf{x}) \in [0, 1]$ for all $\mathbf{x} \in X$, so that the functions \tilde{f}_k can be compared on a common scale