MVE165/MMG631 Linear and Integer Optimization with Applications Lecture 4 Linear programming: the simplex algorithm; degeneracy; unbounded solution; multiple optimal solutions; infeasibility; starting solutions

Ann-Brith Strömberg

2019-04-02

Basic feasible solutions – algebraic descriptions (Ch. 4.8)

A linear program with basis *B* (the square matrix $\mathbf{B} \in \mathbb{R}^{m \times m}$ is nonsingular):

minimize
$$z = \mathbf{c}_B^\top \mathbf{x}_B + \mathbf{c}_N^\top \mathbf{x}_N$$
 (1a)

subject to
$$\mathbf{B}\mathbf{x}_B + \mathbf{N}\mathbf{x}_N = \mathbf{b}$$
 (1b)
 $\mathbf{x}_B \ge \mathbf{0}^m, \ \mathbf{x}_N \ge \mathbf{0}^{n-m}$ (1c)

Multiply the system of equations (1b) by \mathbf{B}^{-1} from the left \implies an equivalent formulation:

minimize
$$z = \mathbf{c}_B^\top \mathbf{B}^{-1} \mathbf{b} + (\mathbf{c}_N^\top - \mathbf{c}_B^\top \mathbf{B}^{-1} \mathbf{N}) \mathbf{x}_N$$
 (2a)
subject to $\mathbf{B}^{-1} \mathbf{b} - \mathbf{B}^{-1} \mathbf{N} \mathbf{x}_N \ge \mathbf{0}^m$ (2b)
 $\mathbf{x}_N \ge \mathbf{0}^{n-m}$ (2c)

Basic feasible solutions – algebraic descriptions (Ch. 4.8)

The equivalent formulation:

$$\begin{array}{ll} \text{minimize} & z = \mathbf{c}_B^\top \mathbf{B}^{-1} \mathbf{b} + (\mathbf{c}_N^\top - \mathbf{c}_B^\top \mathbf{B}^{-1} \mathbf{N}) \mathbf{x}_N \\ \text{subject to} & \mathbf{B}^{-1} \mathbf{b} - \mathbf{B}^{-1} \mathbf{N} \mathbf{x}_N \geq \mathbf{0}^m \\ & \mathbf{x}_N \geq \mathbf{0}^{n-m} \end{array}$$

At the basic solution defined by $B \subset \{1, \ldots, n\}$:

- Each non-basic variable takes the value 0, i.e., $\mathbf{x}_N = \mathbf{0}^{n-m}$
- The basic variables take the values $\mathbf{x}_B = \mathbf{B}^{-1}\mathbf{b} - \mathbf{B}^{-1}\mathbf{N}\mathbf{x}_N = \mathbf{B}^{-1}\mathbf{b}$
- The value of the objective function is $z = \mathbf{c}_B^{\top} \mathbf{B}^{-1} \mathbf{b}$
- The basic solution is feasible if $\mathbf{B}^{-1}\mathbf{b} \ge \mathbf{0}^m$

Optimality in an extreme point

Recall Theorem 4.2:

Theorem (optimal solution in an extreme point)

Assume that the feasible region $X = {\mathbf{x} \ge \mathbf{0}^n | \mathbf{A}\mathbf{x} \le \mathbf{b}}$ is non-empty and bounded. Then, the minimum value of the objective $\mathbf{c}^\top \mathbf{x}$ is attained at (at least) one extreme point $\mathbf{\bar{x}}$ of X.

Also (Ch. 4.3)

Each extreme point $\bar{\mathbf{x}}$ of X corresponds to a basic feasible solution (BFS), i.e., an $\bar{\mathbf{x}} = (\bar{\mathbf{x}}_B, \bar{\mathbf{x}}_N) \in X$ such that $\bar{\mathbf{x}}_N = \mathbf{0}^{n-m}$ and $\bar{\mathbf{x}}_B = \mathbf{B}^{-1}\mathbf{b} \ge \mathbf{0}^m$

Search for BFSs, with iteratively better (lower) objective values

The objective value of a BFS

The equivalent formulation:

$$\begin{array}{lll} \textit{minimize} & z = \mathbf{c}_B^\top \mathbf{B}^{-1} \mathbf{b} + (\mathbf{c}_N^\top - \mathbf{c}_B^\top \mathbf{B}^{-1} \mathbf{N}) \mathbf{x}_N \\ \textit{subject to} & \mathbf{B}^{-1} \mathbf{b} - \mathbf{B}^{-1} \mathbf{N} \mathbf{x}_N & \geq & \mathbf{0}^m \\ & \mathbf{x}_N & \geq & \mathbf{0}^{n-m} \end{array}$$

- The objective value for the basis B is $z = \mathbf{c}_B^\top \mathbf{B}^{-1} \mathbf{b}$
- If, for some (non-basic) j ∈ N, it holds that
 c_j − c_B[⊤]B⁻¹A_j < 0, then the objective value z will decrease when the value of the variable x_j increases from 0
- To stay feasible, the value of the non-basic variable x_j may increase until $x_i = (\mathbf{B}^{-1}\mathbf{b})_i (\mathbf{B}^{-1}\mathbf{A}_j)_i x_j = 0$ for some $i \in B$

The simplex method: Optimality and feasibility and change of basis (Ch. 4.4)

Optimality condition (for minimization)

The basis *B* is optimal if $\mathbf{c}_N^{\top} - \mathbf{c}_B^{\top} \mathbf{B}^{-1} \mathbf{N} \ge \mathbf{0}^{n-m}$ (marginal values = reduced costs ≥ 0) If not, choose as entering variable $j \in N$ the one with the

lowest (negative) value of the reduced cost $c_j - \mathbf{c}_B^{\top} \mathbf{B}^{-1} \mathbf{A}_j$

Feasibility condition

For all $i \in B$ it holds that $x_i = (\mathbf{B}^{-1}\mathbf{b})_i - (\mathbf{B}^{-1}\mathbf{A}_j)_i x_j$

Choose the leaving variable $i^* \in B$ according to

$$i^* = \arg\min_{i\in B} \left\{ \left. \frac{(\mathbf{B}^{-1}\mathbf{b})_i}{(\mathbf{B}^{-1}\mathbf{A}_j)_i} \right| (\mathbf{B}^{-1}\mathbf{A}_j)_i > 0 \right\}$$

Simplex search for linear optimization (Ch. 4.6)

Overview of the simplex algorithm for linear optimization (minimization)

- Initialization: Choose any *feasible basis*, construct the corresponding *basic solution* x⁰, let t := 0
- Step direction: Select a variable to *enter the basis* using the *optimality condition* (negative marginal value).
 Stop if no entering variable exists
- Step length: Use the *feasibility condition* (smallest non-negative quotient) to select a variable to *leave the basis*
- New iterate: Compute the new basic solution x^{t+1} by performing matrix operations
- So Let t := t + 1 and repeat from step 2

Basic feasible solutions and the simplex method

• Express the *m* basic variables in terms of the n - m non-basic variables

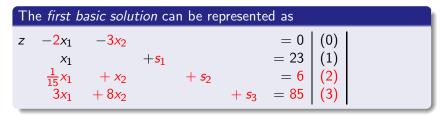
Example: Start at $x_1 = x_2$	$= 0 \Rightarrow {\it s}_1, {\it s}_2, {\it s}_3$	are <i>basic</i>	
<i>x</i> ₁	+ <i>s</i> 1	= 23	
$\frac{1}{15}x_1$		= 6	
$3x_1 +$	$+8x_{2}$	+ s ₃ = 85	

Express s_1 , s_2 , and s_3 in terms of x_1 and x_2 (*non-basic*):

• We wish to maximize the value of the objective function $2x_1 + 3x_2$

Express the objective in terms of the *non-basic* variables: (maximize) $z = 2x_1 + 3x_2 \quad \Leftrightarrow \quad z - 2x_1 - 3x_2 = 0$ Lecture 4 Linear and Integer Optimization with Applications

Basic feasible solutions and the simplex method



- Marginal values for increasing the non-basic variables x₁ and x₂ from zero: 2 and 3, resp.
- $\Rightarrow Choose x_2 let x_2 enter the basis DRAW GRAPH!!$
 - One basic variable (s₁, s₂, or s₃) must *leave the basis*. Which?

The value of x_2 increases until a basic variable reaches the value 0:

$$\begin{array}{c} (2): s_2 = 6 - x_2 \ge 0 & \Rightarrow x_2 \le 6 \\ (3): s_3 = 85 - 8x_2 \ge 0 & \Rightarrow x_2 \le 10\frac{5}{8} \end{array} \right\} \Rightarrow \begin{array}{c} s_2 = 0 \text{ when } x_2 = 6 \\ \text{ (and } s_3 = 37) \end{array}$$

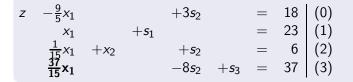
• s₂ will leave the basis

Change basis through row operations

Eliminate s_2 from the basis let x_2 enter the basis—use row operations:								
z	$-2x_{1}$	$-3x_{2}$				=	0	(0)
	<i>x</i> ₁		$+s_1$			=	23	(1)
	$\frac{1}{15}x_1$	+ <i>x</i> ₂		$+s_{2}$		=	6	(2)
	$3x_1$	$+8x_{2}$			$+s_{3}$	=	85	(3)
Ζ	$-\frac{9}{5}x_1$			+3 <i>s</i> ₂		=	18	$(0)+3\cdot(2)$
	x_1		+ <i>s</i> ₁			=	23	$(1) - 0 \cdot (2)$
	$\frac{1}{15}x_1$	$+x_{2}$		$+s_{2}$		=	6	(2)
	$\frac{\frac{1}{15}x_1}{\frac{37}{15}x_1}$			-8 <i>s</i> ₂	+ <i>s</i> ₃	=	37	(3)-8.(2)

- Corresponding basic solution: $s_1 = 23$, $x_2 = 6$, $s_3 = 37$.
- Nonbasic variables: $x_1 = s_2 = 0$
- The marginal value of x_1 is $\frac{9}{5} > 0$. Let x_1 enter the basis
- Which one should leave? s_1 , x_2 , or s_3 ?

Change basis ... x_1 enters the basis (marginal value > 0)



The value of x_1 increases until a basic variable reaches the value 0:

$$\begin{array}{l} (1): s_{1} = 23 - x_{1} \ge 0 & \Rightarrow x_{1} \le 23 \\ (2): x_{2} = 6 - \frac{1}{15}x_{1} \ge 0 & \Rightarrow x_{1} \le 90 \\ (3): s_{3} = 37 - \frac{37}{15}x_{1} \ge 0 & \Rightarrow x_{1} \le 15 \end{array} \right\} \Rightarrow \begin{array}{l} s_{3} = 0 \text{ when} \\ x_{1} = 15 \end{array}$$

 x_1 enters and s_3 leaves the basis: perform row operations:

Ζ			-2.84 <i>s</i> ₂	+0.73 <i>s</i> ₃	=	45	$(0)+(3)\cdot\frac{15}{37}\cdot\frac{9}{5}$
		s_1	$+3.24s_{2}$	$-0.41s_{3}$	=	8	$ \begin{array}{c} (1) - (3) \cdot \frac{15}{37} \\ (2) - (3) \cdot \frac{15}{37} \cdot \frac{1}{15} \\ \end{array} $
	<i>x</i> ₂		$+1.22s_{2}$	-0.03 <i>s</i> ₃	=	5	$(2)-(3)\cdot \frac{15}{37}\cdot \frac{1}{15}$
<i>x</i> ₁			-3.24 <i>s</i> ₂	$+0.41s_{3}$	=	15	$(3) \cdot \frac{15}{37}$

The value of s_2 increases until some basic variable value = 0:

$(1): s_1 = 8 - 3.24 s_2 \ge 0$)	$c_{1} = 0$ when
$(2): x_2 = 5 - 1.22s_2 \ge 0$	\Rightarrow s $_2 \leq$ 4.10	$\rangle \Rightarrow$	$s_1 = 0$ when
$(3): x_1 = 15 + 3.24s_2 \ge 0$	$\Rightarrow s_2 \geq -4.63$	J	$s_2 = 2.47$

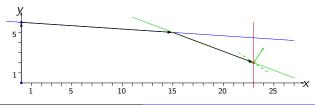
 s_2 enters and s_1 leaves the basis: perform row operations

Z		0.87 <i>s</i> 1		0.37 <i>s</i> 3	=	52	
		0.31 <i>s</i> 1	$+s_{2}$	-0.12 <i>s</i> ₃	=	2.47	$(1) \cdot \frac{1}{3.24}$
	<i>x</i> ₂	-0.37 <i>s</i> 1		$+0.12s_{3}$	=	2	$(2)-(1)\cdot \frac{1.22}{3.24}$
x_1		$+s_1$			=	23	(3)+(1)

Optimal basic solution

z		0.87 <i>s</i> 1		0.37 <i>s</i> 3	=	52
		0.31 <i>s</i> ₁	+ <i>s</i> ₂	$-0.12s_{3}$	=	2.47
	<i>x</i> ₂	-0.37 <i>s</i> 1		$+0.12s_{3}$	=	2
<i>x</i> ₁		$+s_1$			=	23

- No marginal value is positive. No improvement can be made
- The optimal basis is given by $s_2 = 2.47$, $x_2 = 2$, and $x_1 = 23$
- Non-basic variables: $s_1 = s_3 = 0$



Summary of the solution course

basis	Ζ	<i>x</i> ₁	<i>x</i> ₂	<i>s</i> ₁	<i>s</i> ₂	s 3	RHS
Z	1	-2	-3	0	0	0	0
s_1	0	1	0	1	0	0	23
<i>s</i> ₂	0	0.067	1	0	1	0	6
<i>s</i> ₃	0	3	8	0	0	1	85
Z	1	-1.80	0	0	3	0	18
s_1	0	1	0	1	0	0	23
<i>x</i> ₂	0	0.07	1	0	1	0	6
<i>s</i> 3	0	2.47	0	0	-8	1	37
Z	1	0	0	0	-2.84	0.73	45
s_1	0	0	0	1	3.24	-0.41	8
<i>x</i> ₂	0	0	1	0	1.22	-0.03	5
<i>x</i> ₁	0	1	0	0	-3.24	0.41	15
Z	1	0	0	0.87	0	0.37	52
<i>s</i> ₂	0	0	0	0.31	1	-0.12	2.47
<i>x</i> ₂	0	0	1	-0.37	0	0.12	2
<i>x</i> ₁	0	1	0	1	0	0	23

Properties of linear minimization (maximization) problems that are utilized for the simplex method

• **Optimality condition**: The *entering* variable in a minimization (maximization) problem should have the largest negative reduced cost (positive marginal value)

The entering variable *determines a direction* in which the objective value decreases (increases) the fastest

This direction is along an edge of the feasible polyhedron

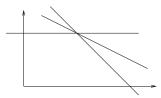
If all *reduced costs are positive* (marginal values are negative), then the current basis is *optimal*

• Feasibility condition: The *leaving* variable is the one with smallest nonnegative quotient

Corresponds to the constraint that would be violated first

Degeneracy (Ch. 4.10)

- If the smallest nonnegative quotient (in the feasibility condition) is zero, the value of a basic variable will become zero in the next iteration
- The solution is *degenerate*
- The objective value will *not* improve in this iteration
- Risk: cycling around (non-optimal) bases
- Reason: a *redundant* constraint "touches" the feasible set
- Example:



Convergence of the simplex algorithm (Ch. 4.10)

Finite convergence of the simplex algorithm

If all of the basic feasible solutions are non-degenerate, then the simplex algorithm terminates after a finite number of iterations

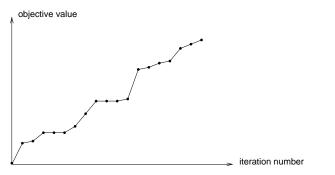
Proof (rough argument)

Non-degeneracy implies that the step length is > 0 in each iteration; hence, we cannot return to an old basic feasible solution once we have left it. Since there are finitely many basic feasible solutions, the algorithm will converge.

- Degeneracy can actually lead to cycling—the same sequence of basic feasible solutions is repeated infinitely
- Remedy: Change the incoming/outgoing criteria! E.g., Bland's rule: Sort variables according to some index ordering

Degeneracy

• Typical objective function progress (maximization) of the simplex method



• In modern software: perturb the right hand side $(b_i + \Delta b_i)$ solve – reduce the perturbation – resolve starting from the current basis – repeat until $\Delta b_i = 0$

Multiple optimal solutions

- If the entering variable has a *zero reduced cost*, then there are (at least) two optimal extreme points
- Also all points on the edge between two optimal extreme points are optimal
 - How does this generalize when there are three or more optimal extreme points?

DRAW GRAPH!!

Unbounded solutions (Ch. 4.4, 4.6)

- If all quotients are *negative*, the value of the variable entering the basis may increase *infinitely*
- Then, the feasible set is *unbounded*
- In a real application this would probably be due to some incorrect assumption (recall "the process of optimization")
- Example:

minimize	z =	$-x_{1}$	$-2x_{2}$		(3a)
subject to		$-x_1$	$+x_{2}$	≤ 2	(3b)
		$-2x_{1}$	$+x_{2}$	≤ 1	(3c)
			x_1, x_2	\geq 0	(3d)

Draw graph!!

Unbounded solutions (Ch. 4.4, 4.6)

• A feasible basis of the optimization problem (3) is given by $x_1 = 1$, $x_2 = 3$, with corresponding tableau¹

basis	Ζ	<i>x</i> ₁	<i>x</i> ₂	s_1	<i>s</i> ₂	RHS
Ζ	1	0	0	-5	3	-7
<i>x</i> ₁	0	1	0	1	-1	1
<i>x</i> ₂	0	0	1	2	-1	3

- Entering variable is s₂
- Row 1: $x_1 = 1 + s_2 \ge 0 \implies s_2 \ge -1$
- Row 2: $x_2 = 3 + s_2 \ge 0 \implies s_2 \ge -3$
- No leaving variable can be found, since no constraint will prevent *s*₂ from increasing infinitely
- The problem has an *unbounded* solution

¹Homework: Find this basis using the simplex method

- If an initial basic feasible solution cannot be found easily:
- Assume that b ≥ 0^m. Introduce an artificial variable a_i in each row that lacks a unit column
- Solve the *phase I-problem*:

$$\begin{array}{lll} \text{minimize} & w = & (\mathbf{1}^m)^{\mathrm{T}} \mathbf{a} \\ \text{subject to} & \mathbf{A} \mathbf{x} & + \mathbf{I}^m \mathbf{a} = \mathbf{b}, \\ & \mathbf{x} & \geq \mathbf{0}^n, \\ & \mathbf{a} \geq \mathbf{0}^m \end{array}$$

Find an initial basic feasible solution—phase II

- The case when feasible solutions exist
 - $w^* = 0$, meaning that $\mathbf{a}^* = \mathbf{0}^m$ must hold
 - The resulting basic solution is *optimal in the phase I-problem* and *feasible in the original problem*
 - Start phase-II: solve the original problem, starting from this basic feasible solution
- The case when feasible solutions do not exist
 - $w^* > 0$. The optimal basis then has some $a_i^* > 0$
 - Due to the construction of the objective function, *there exists no feasible solution to the original problem*
 - What to do then? Modelling errors? Can be detected from the optimal solution. In fact, some linear optimization problems are pure feasibility problems