MVE165/MMG631 Linear and integer optimization with applications Lecture 7 Discrete optimization models and applications; complexity

Ann-Brith Strömberg

2019-04-09

Recall the diet problem

Sets

- $\mathcal{J} = \{1, \dots, n\}$ kinds of food • $\mathcal{I} = \{1, \dots, m\}$ — kinds of nutrients
- Variables
 - $x_j, j \in \mathcal{J}$ purchased amount of food j per day
- Parameters
 - $c_j, j \in \mathcal{J}$ cost of food j
 - $a_j, j \in \mathcal{J}$ available amount of food j
 - p_{ij} , $i \in \mathcal{I}$, $j \in \mathcal{J}$ content of nutrient i in food j
 - q_i lower limit on the amount of nutrient *i* per day
 - Q_i upper limit on the amount of nutrient *i* per day

The diet problem

The linear optimization model							
$\min_{x} \sum_{j=1}^{n} c_j x_j,$							
subject to	$q_i \leq$	$\sum_{j=1}^n p_{ij}x_j \leq Q_i,$	$i=1,\ldots,m,$				
	$0 \leq$	$x_j \leq a_j,$	$j=1,\ldots,n.$				

- What if we may buy at most k < n different kinds of food?
- Define new variables: $y_j = \begin{cases} 1 & \text{if food } j \text{ is in the diet} \\ 0 & \text{otherwise} \end{cases}$
- Model the following relations:

$$egin{array}{rcl} y_j = 0 & \Longrightarrow & x_j = 0 \ y_j = 1 & \Longrightarrow & x_j \geq 0 \end{array}$$

The cardinality constrained diet problem

- Add a *cardinality constraint*: ∑_{j=1}ⁿ y_j ≤ k
 Modify the availability constraints: 0 ≤ x_j ≤ a_jy_j

An integer (binary)) linear	optimization model		
minimize		$\sum_{j=1}^n c_j x_j,$		
subject to	$q_i \leq$	$\sum_{j=1}^n p_{ij} x_j \leq Q_i,$	$i=1,\ldots,m,$	
		$\sum_{j=1}^n y_j \le k,$		
	$0 \leq$	$x_j \leq a_j y_j,$	$j=1,\ldots,n,$	
		$y_j \in \{0,1\},$	$j=1,\ldots,n.$	

The cardinality constrained diet problem—an instance

- Buy at most k types of food
- Totally n=20 types of food: SourMilk, Milk, Potato, Carrot, HaricotVerts, GreenBeans, Spinache, Tomato, Cabbage, Banana, Queenberries, OrangeJuice, Chicken, Salmon, Cod, Rice, Pasta, Egg, Apple, Ham
- Constraints on m=13 nutrients: Energy, Carbohydrates, Fat, Protein, Fibres, SaturFat, SingleUnsaturFat, MultiUnsaturFat, VitaminD, VitaminC, Folate, Iron, Salt

Optimal solutions for $k \in \{20, 10\}$

k	20	10
Apple	3	3
Banana	2	2
Carrot	2.3	3
Chicken	0.4	
Egg	2	2
HaricotVerts	0.1	
Milk	3	3
Pasta	2	2
Potato	2.3	2.4
Rice	1	1
Salmon	0.5	0.8
SourMilk	2	2

For $k \le 9$ no feasible solution exists

- Linear programming (LP) uses continuous variables: $x_{ij} \ge 0$
- Integer linear programming (ILP) uses integer variables: $x_{ij} \in \mathbb{Z}$
- Binary linear programming (BLP) uses binary variables: $x_{ij} \in \mathbb{B}$
- If both continuous and integer/binary variables are used in a program, it is called a mixed integer/binary linear program (MILP)/(MBLP)

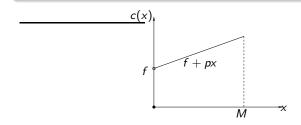
Constraints

- An ILP (or MILP) possesses linear constraints and integer requirements on the variables
- Also logical relations, e.g., *if-then* and *either-or*, can be modelled
- This is done by introducing additional (binary) variables and additional constraints

(Ch. 13.1)

MILP modelling—fixed charges

- Send a truck \Rightarrow Start-up cost: f > 0
- Load loafs of bread on the truck \Rightarrow cost per loaf: p > 0
- x = # bread loafs to transport from bakery to store



The cost function $c : \mathbb{R}_+ \mapsto \mathbb{R}_+$ is *nonlinear* and *discontinuos*

$$c(x) := \begin{cases} 0 & \text{if } x = 0\\ f + px & \text{if } 0 < x \le M \end{cases}$$

MILP modelling—fixed charges

- Let y = # trucks to send (here, y equals 0 or 1)
- Replace c(x) by fy + px

• Constraints: $0 \le x \le My$ and $y \in \{0, 1\}$

	[min	fy + px]
New model:	s.t.	fy + px x - My	\leq	0
New model.		X	\geq	0
	L	У	\in	$\{0,1\}$

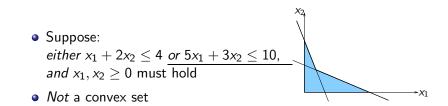
• $y = 0 \Rightarrow x = 0 \Rightarrow fy + px = 0$

• $y = 1 \Rightarrow x \le M \Rightarrow fy + px = f + px$

•
$$x > 0 \Rightarrow y = 1 \Rightarrow fy + px = f + px$$

• $x = 0 \Rightarrow y = 0$ But: Minimization will push y to zero!

Discrete alternatives



Let $M \gg 1$ and define $y \in \{0, 1\}$

$$\Rightarrow \text{ New set of constraints:} \begin{bmatrix} x_1 + 2x_2 & -My \le 4\\ 5x_1 + 3x_2 - M(1 - y) \le 10\\ y \in \{0, 1\}\\ x_1, x_2 & \ge 0 \end{bmatrix}$$

• $y = \begin{cases} 0 \Rightarrow x_1 + 2x_2 \le 4 \text{ must hold}\\ 1 \Rightarrow 5x_1 + 3x_2 \le 10 \text{ must hold} \end{cases}$

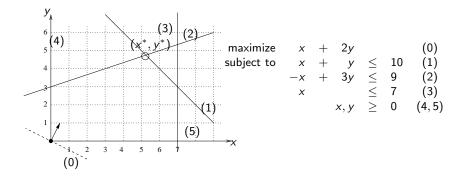
Exercises: Homework

- Suppose that you are interested in choosing from a set of investments {1,...,7} using 0/1 variables. Model the following constraints:
 - You cannot invest in all of them
 - You must choose at least one of them
 - Investment 1 cannot be chosen if investment 3 is chosen
 - Investment 4 can be chosen only if investment 2 is also chosen
 - You must choose either both investment 1 and 5 or neither
 - You must choose either at least one of the investments 1, 2 and 3 or at least two investments from 2, 4, 5 and 6
- Pormulate the following as mixed integer programs:

•
$$u = \min\{x_1, x_2\}$$
, assuming that $0 \le x_j \le C$ for $j = 1, 2$

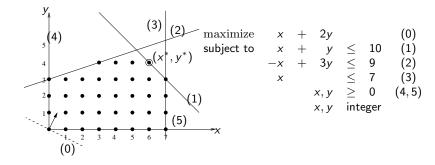
- ② $v = |x_1 x_2|$ with 0 ≤ x_j ≤ C for j = 1, 2
- $\textbf{ o The set } X \setminus \{x^*\} \text{ where } X = \{x \in Z^n | Ax \leq b\} \text{ and } x^* \in X$

Linear programming: A small example



- Optimal solution: $(x^*, y^*) = (5\frac{1}{4}, 4\frac{3}{4})$
- Optimal objective value: 14³/₄

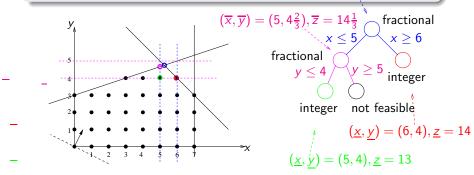
Integer linear programming: A small example



- What if the variables must take integer values?
- Optimal solution: $(x^*, y^*) = (6, 4)$
- Optimal objective value: $14 < 14\frac{3}{4}$
- The optimal value decreases (possibly constant) when the variables are restricted to possess only integral values

ILP: Solution by the branch–and–bound algorithm (e.g., Gurobi, Cplex, or CLP) (Ch. 15.1–15.2)

- Relax integrality requirements \Rightarrow linear, continuous problem $\Rightarrow (\overline{x}, \overline{y}) = (5\frac{1}{4}, 4\frac{3}{4}), \overline{z} = 14\frac{3}{4}$
- Search tree: branch on fractional variable values



For *n* binary variables: $\leq 2^n$ branches in the search tree

The knapsack problem—budget constraint

 Select an optimal collection of objects or investments or projects or ...

• c_j = benefit of choosing object $j, j = 1, \ldots, n$

Limits on the budget

• $a_j = \text{cost of object } j, j = 1, \dots, n$

- b = total budget
- Variables: $x_j = \begin{cases} 1, & \text{if object } j \text{ is chosen}, \\ 0, & \text{otherwise}, \end{cases}$ • Objective function: $\boxed{\max \sum_{j=1}^n c_j x_j} \\ \boxed{\sum_{j=1}^n a_j x_j \leq b} \\ \hline{x_j \in \{0, 1\}, j = 1, \dots, n} \end{cases}$

(Ch. 13.2)

Computational complexity—the knapsack problem (Ch 2.6)

A small knapsack instance

$z_1^* = \max$	$213x_1 + 1928x_2 + 11111x_3 + 2345x_4 + 9123x_5$		
subject to	$12223x_1 + 12224x_2 + 36674x_3 + 61119x_4 + 85569x_5$	\leq	89 643 482
	x_1,\ldots,x_5	\geq	0 , integer

- Optimal solution $\mathbf{x}^* = (0, 1, 2444, 0, 0), z_1^* = 27157212$
- Cplex finds this solution in 0.015 seconds

The equality version

$z_2^* = \max$	$213x_1 + 1928x_2 + 11111x_3 + 2345x_4 + 9123x_5$		
subject to	$12223x_1 + 12224x_2 + 36674x_3 + 61119x_4 + 85569x_5$	=	89 643 482
	x_1,\ldots,x_5	\geq	0 , integer

- Optimal solution $\mathbf{x}^* = (7334, 0, 0, 0, 0), \ z_2^* = 1562142$
- Cplex computations interrupted after 1700 sec. ($\approx \frac{1}{2}$ hour)
 - No integer solution found
 - Best upper bound found: 25 821 000
 - 55 863 802 branch-and-bound nodes visited
 - Only one feasible solution exists!

Assign each task to one resource, and each resource to one task

• A cost c_{ii} for assigning task *i* to resource *j*, $i, j \in \{1, \ldots, n\}$ • Variables: $x_{ij} = \begin{cases} 1, & \text{if task } i \text{ is assigned to resource } j \\ 0, & \text{otherwise} \end{cases}$

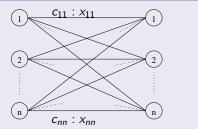
m

Sι

n n

The assignment model

Choose one element from each row and each column



c_{11}	c ₁₂	c ₁₃			c _{1n}
c_{21}	c ₂₂	c ₂₃			c _{2n}
c ₃₁	c ₃₂	c33			c _{3n}
[[[[[
c _{n1}	с _{п2}	c _{n3}			cnn

- This integer linear model has *integral extreme points*, since it can be formulated as a network flow problem (Lect. 11–12)
- Therefore, it can be efficiently solved using specialized (network) linear programming techniques
- Even more efficient special purpose (primal-dual-graph-based) algorithms exist

Computational complexity

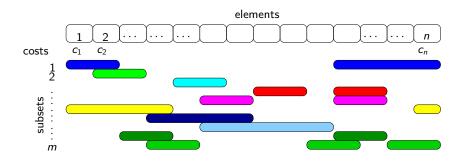
- Mathematical insight yields efficient algorithms
- E.g., the assignment problem
 - # feasible solutions: $n! \implies$ Combinatorial explosion
 - An algorithm \exists that solves this problem in time $\mathcal{O}(n^4) \propto n^4$

Complete enumeration of all solutions is <i>not</i> efficient									
n	n 2 5 8 10 100 1000								
<i>n</i> !	2	120	40 000	3 600 000	$9.3 \cdot 10^{157}$	$4.0 \cdot 10^{2567}$			
2 ⁿ	4	32	256	1024	$1.3\cdot 10^{30}$	$1.1\cdot 10^{301}$			
n^4	16	625	4 100	10 000	$1.0\cdot 10^8$	$1.0\cdot 10^{12}$			
n log n	0.6	3.5	7.2	10	200	3 000			

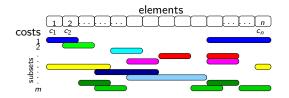
- Binary knapsack: $\mathcal{O}(2^n)$
- Continuous knapsack (sorting of $\frac{c_j}{a_i}$): $\mathcal{O}(n \log n)$

Set covering problem—exponential complexity (Ch. 13.8)

- A number (n) of items and a cost for each item
- A number (m) of subsets of the n items
- Find a selection of the items such that each subset contains at least one selected item and such that the total cost for the selected items is minimized



The set covering problem



Mathematical formulation

$$\begin{array}{ll} \mbox{min} & \mathbf{c}^\top \mathbf{x} \\ \mbox{subject to} & \mathbf{A} \mathbf{x} & \geq \mathbf{1} \\ & \mathbf{x} & \mbox{binary} \end{array}$$

- $\mathbf{c} \in \mathbb{R}^n$ and $\mathbf{1} = (1, \dots, 1)^\top \in \mathbb{R}^m$ are constant vectors
- $\mathbf{A} \in \mathbb{R}^{m \times n}$ is a matrix with entries $a_{ij} \in \{0, 1\}$
- $\mathbf{x} \in \mathbb{R}^n$ is the vector of variables
- Related models: set partitioning (Ax = 1), set packing (Ax \leq 1)