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Recall the diet problem

® Sets
o J={1,...,n} — kinds of food
e Z={1,...,m} — kinds of nutrients

@ Variables
e Xxj, j € J — purchased amount of food j per day

@ Parameters
e ¢j, j € J — cost of food j

(<]

aj, j € J — available amount of food j

<

pij, I € Z, j € J — content of nutrient / in food j
o g; — lower limit on the amount of nutrient / per day

@ Q; — upper limit on the amount of nutrient / per day
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The diet problem

The linear optimization model

n
minimize E GiXj,
J=1

n
subject to gi < Zp,-jxj < Q;, i=1,...,m,
Jj=1

0< xj < aj, j=1,...,n.

@ What if we may buy at most k < n different kinds of food?

1 if food j is in the diet

@ Define new variables: y; = { 0 otherwise

@ Model the following relations:
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The cardinality constrained diet problem

n
@ Add a cardinality constraint: Z yi < k
j=1
@ Modify the availability constraints: 0 < x; < ajy;

An integer (binary) linear optimization model

n
minimize g CiXj
X,y L T
Jj=1
n
subject to g; < g piixi < Qj, i=1,...,m,
j=1
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The cardinality constrained diet problem—an instance

Optimal solutions for

@ Buy at most k types of food k € {20, 10}

@ Totally n=20 types of food- k 20 10
SourMilk, Milk, Potato, Carrot, Apple 3 3
HaricotVerts, GreenBeans, Banana 2 2
Spinache, Tomato, Cabbage, Carrot 2.3 3
Banana, Queenberries, Chicken 0.4 —-—
OrangelJuice, Chicken, Salmon, Egg 2 2
Cod, Rice, Pasta, Egg, Apple, HaricotVerts 0.1 —-—
Ham Milk 3 3

@ Constraints on m=13 nutrients: Pasta 2 2

Potato 2.3 2.4
Energy, Carbohydrates, Fat, .
; . Rice 1 1
Protein, Fibres, SaturFat,
SingleUnsaturFat Salmon 0.5 0.8
' SourMilk 2 2

MultiUnsaturFat, VitaminD, :
VitaminC, Folate, Iron, Salt For k <9 no feasible

solution exists
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Modelling with integer variables (Ch. 13.1)

@ Linear programming (LP) uses continuous variables: x;; > 0

o Integer linear programming (ILP) uses integer variables: x;; € Z
® Binary linear programming (BLP) uses binary variables: x;; € B
°

If both continuous and integer/binary variables are used in a
program, it is called a mixed integer/binary linear program
(MILP)/(MBLP)

Constraints

@ An ILP (or MILP) possesses linear constraints and integer
requirements on the variables

@ Also logical relations, e.g., if~then and either—or, can be
modelled

@ This is done by introducing additional (binary) variables and
additional constraints
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MILP modelling—fixed charges

@ Send a truck = Start—up cost: f > 0
@ Load loafs of bread on the truck = cost per loaf: p > 0

@ x = # bread loafs to transport from bakery to store

c(x)

The cost function ¢ : Ry — R, is nonlinear and discontinuos

C(X)::{o if x=0

f+px if 0<x<M
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MILP modelling—fixed charges

Let y = # trucks to send (here, y equals 0 or 1)

Replace c(x) by fy + px
Constraints: 0 < x < My and y € {0,1}

min fy + px

s.t. x—My < 0
New model: i ; 0
y € {01}
oy=0 = x=0 = fy+px=0
oy = = x<M = fy+px=Ff+px
x>0 = y=1 = fy+px=Ff+px
o X = # y =0 But: Minimization will push y to zero!
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Discrete alternatives

X
@ Suppose:
either x1 + 2xo < 4 or 5x; + 3x < 10,
and xq, x> > 0 must hold
@ Not a convex set X1
Let M > 1 and define y € {0,1}
X1+ 2x0 —My <4
_ )<
= New set of constraints: Pl e M(l y) =
y€{0,1}
X1, X2 >0
o v — 0 = x1+2x% <4 must hold
Y=11 = 5x1 +3x» < 10 must hold
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Exercises: Homework

© Suppose that you are interested in choosing from a set of
investments {1,...,7} using 0/1 variables. Model the
following constraints:

You cannot invest in all of them

You must choose at least one of them

Investment 1 cannot be chosen if investment 3 is chosen

Investment 4 can be chosen only if investment 2 is also chosen

You must choose either both investment 1 and 5 or neither

You must choose either at least one of the investments 1, 2

and 3 or at least two investments from 2, 4, 5 and 6

00000

© Formulate the following as mixed integer progams:
@ u=min{x;,x2}, assuming that 0 < x; < C for j = 1,2
QO v=|xg—x|with0<x; <Cforj=1,2
O Theset X\ {x*} where X = {x € Z"|Ax < b} and x* € X
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Linear programming: A small example

maximize x + 2y (0)
subject to x + y < 10 (1)
-x 4+ 3y < 9 (2)
X < 7 3)
x,y > 0 (4,5)
1.2 3 4 5 6 7 X

@ Optimal solution: (x*,y*) = (5%’41)
@ Optimal objective value: 14%
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Integer linear programming: A small example

maximize  x + 2y (0)
subjectto x + y < 10 (1)
-x + 3y < 9 (2)
X < 7 (3)
x,y > 0 (4,5
X,y integer

L2 03
0)"

@ What if the variables must take integer values?

@ Optimal solution: (x*,y*) = (6,4)

@ Optimal objective value: 14 < 14%

@ The optimal value decreases (possibly constant) when the
variables are restricted to possess only integral values
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ILP: Solution by the branch—and—bound algorithm

(e.g., Gurobi, Cplex, or CLP) (Ch. 15.1-15.2)

@ Relax integrality requirements =

— _ 143
linear, continuous problem = (X,y) = (57,43),z = 143
@ Search tree: branch on fractional variable vaIues |
y (x,7) = (5,43),z = 142 " fractional
Lo fractional (¢ ™

"""""""""""" (2,55 O
ys4/mV = > integer

,,,,,,,,,

. h
integer not feasible

(x.y) = (6.4).2= 14

PoE (x.y)=(5,4),z=13

For n binary variables: < 2" branches in the search tree J
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The knapsack problem—budget constraint (Ch

@ Select an optimal collection of objects or investments or
projects or ...
o ¢j = benefit of choosing object j, j=1,...,n
@ Limits on the budget
@ aj = cost of object j, j=1,...,n
@ b = total budget
. 1, if object j is chosen, .
@ Variables: x; = ’ jectJ T j=1,...,n
0, otherwise,
@ Objective function: max 7 GiXj
@ Budget constraint: Z};l ajx; < b
@ Binary variables: x;€{0,1}, j=1,...,n
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Computational complexity—the knapsack problem (Ch 2.6)

A small knapsack instance

zi = max 213x1 +1928x, + 11111x3 + 2345x4 + 9123x5
subject to  12223x; +12224x, +36674x3+61119x:4 +85569x5s < 89 643482
X1,...,X5 > 0,integer

@ Optimal solution x* = (0, 1,2444,0,0), zf = 27157 212
@ Cplex finds this solution in 0.015 seconds

The equality version

7z, = max 213x1 + 1928x; + 11111x3 + 2345x4 + 9123x5
subject to  12223x; +12224x, +36674x3 +61119x4 +85569xs = 89643482
X1,...,X5 > 0,integer

@ Optimal solution x* = (7334,0,0,0,0), z5 = 1562142

@ Cplex computations interrupted after 1700 sec. (& % hour)
No integer solution found

Best upper bound found: 25 821 000

55863 802 branch—and—bound nodes visited

Only one feasible solution exists!

<

¢ © €
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The assignment model (Ch. 13.5)

Assign each task to one resource, and each resource to one task

@ A cost ¢jj for assigning task i to resource j, i,j € {1,...,n}

1, if task / is assigned to resource j

@ Variables: xj; = { 0. otherwise
M

n n
min g E Cij Xij

i=1 j=1

n
subject to Zx,-j = 1, i=1,...,n
j=1

n
dxp =1, j=1...,n
i=1

xj > 0, ihj=1,...,n
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The assignment model

Choose one element from
C X

each row and each column

o €11 €12 €13 i i €1n

€21 |22 (23 ! . 2n

€31/c32 /33| ! L C3n

Cn1(Cn2 [€n3 ! . knn
Xnn

Chn -

@ This integer linear model has integral extreme points, since it
can be formulated as a network flow problem (Lect. 11-12)

@ Therefore, it can be efficiently solved using specialized
(network) linear programming techniques

@ Even more efficient special purpose
(primal—dual—graph-based) algorithms exist
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Computational complexity

@ Mathematical insight yields efficient algorithms

o E.g., the assignment problem

@ # feasible solutions: nl = Combinatorial explosion
o An algorithm 3 that solves this problem in time O(n*) o n

n | 2|5 ] 8 | 10 | 100 | 1000
n! 2 | 120 | 40000 | 3600000 | 9.3-10™7 | 4.0 - 10%°°7
2" 4 | 32 | 256 1024 1.3-10% | 1.1.10%0¢
n* 16 | 625 | 4100 | 10000 1.0-108 | 1.0-10%2
nlogn | 0.6 | 3.5 7.2 10 200 3000

4

@ Binary knapsack: O(2")

@ Continuous knapsack (sorting of :—j) O(nlogn)
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Set covering problem—exponential complexity (Ch. 13.8)

@ A number (n) of items and a cost for each item
@ A number (m) of subsets of the n items

@ Find a selection of the items such that each subset contains at
least one selected item and such that the total cost for the
selected items is minimized

elements

o Lo L L L e
costs C1 (&) Cn
| —
2
E)
aasTr S

subsets
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The set covering problem

elements

CECIMMMEDEN I G N r

costs a @ Cn

Mathematical formulation

min c'x
subjectto Ax > 1
X  binary
@ccR"and1=(1,...,1)T € R™ are constant vectors

@ A € R™*" is a matrix with entries a; € {0,1}

@ x € R" is the vector of variables

o Related models: set partitioning (Ax = 1), set packing
(Ax <1)
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