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2019–04–09

Lecture 7 Linear and integer optimization with applications 1/20



Recall the diet problem

Sets

J = {1, . . . , n} — kinds of food
I = {1, . . . ,m} — kinds of nutrients

Variables

xj , j ∈ J — purchased amount of food j per day

Parameters

cj , j ∈ J — cost of food j

aj , j ∈ J — available amount of food j

pij , i ∈ I, j ∈ J — content of nutrient i in food j

qi — lower limit on the amount of nutrient i per day

Qi — upper limit on the amount of nutrient i per day
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The diet problem

The linear optimization model

minimize
x

n
∑

j=1

cjxj ,

subject to qi ≤
n

∑

j=1

pijxj ≤ Qi , i = 1, . . . ,m,

0 ≤ xj ≤ aj , j = 1, . . . , n.

What if we may buy at most k < n different kinds of food?

Define new variables: yj =

{

1 if food j is in the diet
0 otherwise

Model the following relations:

yj = 0 =⇒ xj = 0
yj = 1 =⇒ xj ≥ 0
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The cardinality constrained diet problem

Add a cardinality constraint:

n
∑

j=1

yj ≤ k

Modify the availability constraints: 0 ≤ xj ≤ ajyj

An integer (binary) linear optimization model

minimize
x ,y

n
∑

j=1

cjxj ,

subject to qi ≤
n

∑

j=1

pijxj ≤ Qi , i = 1, . . . ,m,

n
∑

j=1

yj ≤ k ,

0 ≤ xj ≤ ajyj , j = 1, . . . , n,

yj ∈ {0, 1}, j = 1, . . . , n.
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The cardinality constrained diet problem—an instance

Buy at most k types of food

Totally n=20 types of food:
SourMilk, Milk, Potato, Carrot,
HaricotVerts, GreenBeans,
Spinache, Tomato, Cabbage,
Banana, Queenberries,
OrangeJuice, Chicken, Salmon,
Cod, Rice, Pasta, Egg, Apple,
Ham

Constraints on m=13 nutrients:
Energy, Carbohydrates, Fat,
Protein, Fibres, SaturFat,
SingleUnsaturFat,
MultiUnsaturFat, VitaminD,
VitaminC, Folate, Iron, Salt

Optimal solutions for
k ∈ {20, 10}

k 20 10
Apple 3 3
Banana 2 2
Carrot 2.3 3
Chicken 0.4 – –
Egg 2 2
HaricotVerts 0.1 – –
Milk 3 3
Pasta 2 2
Potato 2.3 2.4
Rice 1 1
Salmon 0.5 0.8
SourMilk 2 2

For k ≤ 9 no feasible
solution exists
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Modelling with integer variables (Ch. 13.1)

Variables

Linear programming (LP) uses continuous variables: xij ≥ 0

Integer linear programming (ILP) uses integer variables:xij ∈ Z

Binary linear programming (BLP) uses binary variables: xij ∈ B

If both continuous and integer/binary variables are used in a
program, it is called a mixed integer/binary linear program
(MILP)/(MBLP)

Constraints

An ILP (or MILP) possesses linear constraints and integer
requirements on the variables

Also logical relations, e.g., if–then and either–or, can be
modelled

This is done by introducing additional (binary) variables and
additional constraints
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MILP modelling—fixed charges

Send a truck ⇒ Start–up cost: f > 0

Load loafs of bread on the truck ⇒ cost per loaf: p > 0

x = # bread loafs to transport from bakery to store

x

c(x)

f
f + px

M

The cost function c : R+ 7→ R+ is nonlinear and discontinuos

c(x) :=

{

0 if x = 0
f + px if 0 < x ≤ M
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MILP modelling—fixed charges

Let y = # trucks to send (here, y equals 0 or 1)

Replace c(x) by fy + px

Constraints: 0 ≤ x ≤ My and y ∈ {0, 1}

New model:









min fy + px
s.t. x −My ≤ 0

x ≥ 0
y ∈ {0, 1}









y = 0 ⇒ x = 0 ⇒ fy + px = 0

y = 1 ⇒ x ≤ M ⇒ fy + px = f + px

x > 0 ⇒ y = 1 ⇒ fy + px = f + px

x = 0 6⇒ y = 0 But: Minimization will push y to zero!
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Discrete alternatives

Suppose:
either x1 + 2x2 ≤ 4 or 5x1 + 3x2 ≤ 10,
and x1, x2 ≥ 0 must hold

Not a convex set x1

x2

Let M ≫ 1 and define y ∈ {0, 1}

⇒ New set of constraints:









x1 + 2x2 −My ≤ 4
5x1 + 3x2 −M(1− y)≤ 10

y ∈ {0, 1}
x1, x2 ≥ 0









y =

{

0 ⇒ x1 + 2x2 ≤ 4 must hold
1 ⇒ 5x1 + 3x2 ≤ 10 must hold
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Exercises: Homework

1 Suppose that you are interested in choosing from a set of
investments {1, . . . , 7} using 0/1 variables. Model the
following constraints:

1 You cannot invest in all of them
2 You must choose at least one of them
3 Investment 1 cannot be chosen if investment 3 is chosen
4 Investment 4 can be chosen only if investment 2 is also chosen
5 You must choose either both investment 1 and 5 or neither
6 You must choose either at least one of the investments 1, 2

and 3 or at least two investments from 2, 4, 5 and 6

2 Formulate the following as mixed integer progams:
1 u = min{x1, x2}, assuming that 0 ≤ xj ≤ C for j = 1, 2
2 v = |x1 − x2| with 0 ≤ xj ≤ C for j = 1, 2
3 The set X \ {x∗} where X = {x ∈ Z n|Ax ≤ b} and x∗ ∈ X
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Linear programming: A small example

1 2 4 5 6 7

2

5

3

1

3

4

6

x

y

(0)

(1)

(2)(3)
(4)

(5)

(x∗

, y∗) maximize x + 2y (0)
subject to x + y ≤ 10 (1)

−x + 3y ≤ 9 (2)
x ≤ 7 (3)

x , y ≥ 0 (4, 5)

Optimal solution: (x∗, y∗) = (51

4
, 43

4
)

Optimal objective value: 143

4
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Integer linear programming: A small example

1 2 4 5 6 7

1

2

3

4

5

3
x

y

(0)

(1)

(2)(3)
(4)

(5)

(x∗

, y∗)

maximize x + 2y (0)
subject to x + y ≤ 10 (1)

−x + 3y ≤ 9 (2)
x ≤ 7 (3)

x , y ≥ 0 (4, 5)
x , y integer

What if the variables must take integer values?

Optimal solution: (x∗, y∗) = (6, 4)

Optimal objective value: 14 < 143

4

The optimal value decreases (possibly constant) when the
variables are restricted to possess only integral values
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ILP: Solution by the branch–and–bound algorithm
(e.g., Gurobi, Cplex, or CLP) (Ch. 15.1–15.2)

Relax integrality requirements ⇒
linear, continuous problem ⇒ (x , y) = (51

4
, 43

4
), z = 143

4

Search tree: branch on fractional variable values

1 2 4 5 6 7

1

2

3

4

5

3
x

y fractional

fractional

not feasibleinteger

integer

x ≤ 5 x ≥ 6

y ≤ 4 y ≥ 5

(x , y) = (5, 4 2

3
), z = 14 1

3

(x , y) = (6, 4), z = 14

(x , y) = (5, 4), z = 13

For n binary variables: ≤ 2n branches in the search tree
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The knapsack problem—budget constraint (Ch. 13.2)

Select an optimal collection of objects or investments or
projects or ...

cj = benefit of choosing object j , j = 1, . . . , n

Limits on the budget

aj = cost of object j , j = 1, . . . , n
b = total budget

Variables: xj =

{

1, if object j is chosen,
0, otherwise,

j = 1, . . . , n

Objective function: max
∑n

j=1
cjxj

Budget constraint:
∑n

j=1
ajxj ≤ b

Binary variables: xj ∈ {0, 1}, j = 1, . . . , n
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Computational complexity—the knapsack problem (Ch 2.6)

A small knapsack instance

z∗1 = max 213x1 + 1928x2 + 11111x3 + 2345x4 + 9123x5
subject to 12223x1+12224x2+36674x3+61119x4+85569x5 ≤ 89 643 482

x1, . . . , x5 ≥ 0, integer

Optimal solution x∗ = (0, 1, 2444, 0, 0), z∗1 = 27157 212
Cplex finds this solution in 0.015 seconds

The equality version

z∗2 = max 213x1 + 1928x2 + 11111x3 + 2345x4 + 9123x5
subject to 12223x1+12224x2+36674x3+61119x4+85569x5 = 89 643 482

x1, . . . , x5 ≥ 0, integer

Optimal solution x∗ = (7334, 0, 0, 0, 0), z∗2 = 1562 142
Cplex computations interrupted after 1700 sec. (≈ 1

2
hour)

No integer solution found
Best upper bound found: 25 821 000
55 863 802 branch–and–bound nodes visited
Only one feasible solution exists!
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The assignment model (Ch. 13.5)

Assign each task to one resource, and each resource to one task

A cost cij for assigning task i to resource j , i , j ∈ {1, . . . , n}

Variables: xij =

{

1, if task i is assigned to resource j
0, otherwise

min

n
∑

i=1

n
∑

j=1

cijxij

subject to
n

∑

j=1

xij = 1, i = 1, . . . , n

n
∑

i=1

xij = 1, j = 1, . . . , n

xij ≥ 0, i , j = 1, . . . , n
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The assignment model

Choose one element from each row and each column

1

2

1

2

nn

c11 : x11

cnn : xnn

c11 c12 c13

c21 c22 c23

c31 c32 c33

cn1 cn2 cn3

c1n

c2n

c3n

cnn

This integer linear model has integral extreme points, since it
can be formulated as a network flow problem (Lect. 11–12)

Therefore, it can be efficiently solved using specialized
(network) linear programming techniques

Even more efficient special purpose
(primal–dual–graph-based) algorithms exist
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Computational complexity

Mathematical insight yields efficient algorithms

E.g., the assignment problem

# feasible solutions: n! =⇒ Combinatorial explosion
An algorithm ∃ that solves this problem in time O(n4) ∝ n4

Complete enumeration of all solutions is not efficient

n 2 5 8 10 100 1000

n! 2 120 40 000 3 600 000 9.3 · 10157 4.0 · 102567

2n 4 32 256 1 024 1.3 · 1030 1.1 · 10301

n4 16 625 4 100 10 000 1.0 · 108 1.0 · 1012

n log n 0.6 3.5 7.2 10 200 3 000

Binary knapsack: O(2n)

Continuous knapsack (sorting of
cj
aj
): O(n log n)
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Set covering problem—exponential complexity (Ch. 13.8)

A number (n) of items and a cost for each item

A number (m) of subsets of the n items

Find a selection of the items such that each subset contains at
least one selected item and such that the total cost for the
selected items is minimized

1

1

2

2

m

n
c1 c2 cn

su
b
se
ts

elements

costs
· · · · · ·· · ·· · ·· · ·

...

...

...
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The set covering problem (Ch. 13.8)

1

1

2

2

m

n
c1 c2 cn

s
u
b
s
e
ts

elements

costs
· · · · · ·· · ·· · ·· · ·

.

.

..

.

.

.

.

.

Mathematical formulation

min c⊤x
subject to Ax ≥ 1

x binary

c ∈ R
n and 1 = (1, . . . , 1)⊤ ∈ R

m are constant vectors
A ∈ R

m×n is a matrix with entries aij ∈ {0, 1}
x ∈ R

n is the vector of variables
Related models: set partitioning (Ax = 1), set packing
(Ax ≤ 1)
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