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Methods for ILP: Overview (Ch. 14.1)

Enumeration

Implicit enumeration: Branch–and–bound

Relaxations

Decomposition methods: Solve simpler problems repeatedly

Add valid inequalities to an LP ⇒ “cutting plane methods”

Lagrangian relaxation

Heuristic algorithms – optimum not guaranteed

“Simple” rules ⇒ feasible solutions (usually fairly good but
non-optimal; do not provide the “goodness” of a solution)

Construction heuristics

Local search heuristics
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Convex sets

A set S is convex if, for any elements x, y ∈ S it holds that

αx+ (1− α)y ∈ S for all 0 ≤ α ≤ 1

Examples:

xx

x

y
y

y

Convex sets Non-convex sets

Linear optimization problems have convex feasible sets
Integrality requirements ⇒ nonconvex feasible set
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Relaxations and feasible solutions (Ch. 14.2)

Consider a minimization integer linear program (ILP)

[ILP] z∗ := min c⊤x
subject to Ax ≤ b

x ≥ 0 and integer

The feasible set X = {x ∈ Z n
+ |Ax ≤ b} is non-convex

How can one prove that a solution x∗ ∈ X is optimal?

We cannot use strong duality/complementarity as for linear
optimization (where X is polyhedral ⇒ convexity)

Bounds on the optimal value—“goodness”measures

Optimistic estimate z ≤ z∗ from a relaxation of ILP
Pessimistic estimate z̄ ≥ z∗ from a feasible solution to ILP
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Optimistic estimates of z∗ from relaxations

Either: Enlarge the set X by removing constraints
=⇒ X relax ⊇ X

Or: Replace c⊤x by an underestimating function f , i.e., such
that f (x) ≤ c⊤x for all x ∈ X

Or: Do both of the above

⇒ solve a relaxation of (ILP)

Example: enlarge X by relaxing the integrality requirements

X = {x ≥ 0 | Ax ≤ b, x integer }

X LP = {x ≥ 0 | Ax ≤ b}

⇒ zLP := min
x∈X LP

c⊤x

It holds that zLP ≤ z∗ since X ⊆ X LP
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The travelling salesperson problem (TSP) (Ch. 13.10)

Given n connected cities

Distance on each
connection

Find the shortest tour
that passes through all
the cities
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V = {1, . . . , n}: the set of
cities

dij : distance from city i to
city j (here: directed arcs,
i.e., dij 6= dji)

Binary variable xij ⇐⇒
connection from i to j

Computationally
intractable due to the
combinatorial explosion

Several versions of the
TSP: Euclidean, metric,
symmetric ...
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An ILP formulation of the TSP problem

min
∑

i∈V

∑

j∈V

dijxij ,

s.t.
∑

j∈V

xij = 1, i ∈ V , (1)

∑

i∈V

xij = 1, j ∈ V , (2)
∑

i∈U,j∈V \U

xij ≥ 1, ∀U ⊂ V : 2 ≤ |U| ≤ |V | − 2, (3)

xij binary i , j ∈ V (4)

Cf. the assignment problem Draw graph * 2 !

Enter and leave each city exactly once ⇔ (1) and (2) Draw!

Constraints (3): subtour elimination Draw!

Alternative formulation of (3): Draw!∑
(i ,j)∈U xij ≤ |U| − 1, ∀U ⊂ V : 2 ≤ |U| ≤ |V | − 2

Lecture 8a Linear and integer optimization with applications 7/13



Relaxation principles that yield more tractable problems

Linear programming relaxation

Remove integrality requirements (enlarge X ), but still an
exponential number of constraints (3)

Combinatorial relaxation

E.g. remove subtour constraints (3) ⇒ minimum-cost assignment
(enlarge X )

draw!

Lagrangean relaxation ⇒ Lagrange dual

Move “complicating” constraints to the objective function, with
penalties for infeasible solutions; then find “optimal” penalties
(enlarge X and construct a function f such that f (x) ≤ c⊤x,
∀x ∈ X )
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Tight bounds

Suppose that x̄ ∈ X is a feasible solution to ILP
(min-problem) and that x solves a relaxation of ILP

Then, it holds that

z := c⊤x ≤ z∗ ≤ c⊤x̄ =: z̄

If z̄ − z ≤ ε then the value of the solution candidate x̄ is at
most ε from the optimal value z∗

Efficient solution methods for ILP combine relaxation and

heuristic methods to find tight bounds (small ε ≥ 0)
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Branch–&–Bound algorithms (B&B) (Ch. 15)

[ILP] z∗ = min
x∈X

c⊤x, where X ⊂ Z n

Divide–&–Conquer: a general principle to partition and search
the feasible space

Branch–&–Bound: Divide–and–conquer for finding optimal

solutions to optimization problems with integrality
requirements (versions for more general non-convex sets)

Can be adapted to different types of models
Can be combined with other (e.g. heuristic) algorithms
Also called implicit enumeration and tree search
Idea: Enumerate all feasible solutions by a successive
partitioning of X into a family of subsets
Enumeration organized in a tree using graph search; it is made
implicit by utilizing approximations of z∗ from relaxations of
[ILP] for pruning branches from the B&B-tree
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Branch–&–bound for ILP: Main concepts

Relaxation: a simplification of [ILP] in which some constraints are
removed

Purpose: to get simple (i.e., polynomially solvable) (node)
subproblems, and optimistic approximations of z∗

Examples: remove integrality requirements, remove or
Lagrangean relax complicating (linear) constraints (e.g.,
sub-tour constraints)

Branching strategy: rules for partitioning a subset of X

Purpose: exclude the solution to a relaxation if it is not
feasible in [ILP] ⇐⇒ a partitioning of the feasible set

Examples: Branch on fractional values, subtours, etc
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B&B: Main concepts (continued)

Tree search strategy: defines the order in which the nodes in the
B&B tree are created and searched

Purpose: quickly find good feasible solutions =⇒ limit the size
of the tree

Examples: depth-, breadth-, best-first.

Node cutting criteria: rules for deciding when a subset should not
be further partitioned

Purpose: avoid searching parts of the tree that cannot contain
an optimal solution

Cut off a node (i.e., prune a whole branch) if the
corresponding node subproblem has

no feasible solution, or
an optimal solution which is feasible in [ILP], or
an optimal objective value that is worse (higher) than that of
any known feasible solution
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ILP: Example of a Branch–&–Bound solution

Relax the integrality requirements =⇒ the node subproblem is
a linear (continuous) optimization problem

Branch over fractional variable values

Here: the tree is searched in depth-first order

Here: branches are pruned due to integrality/infeasibility
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x ≤ 5 x ≥ 6

y ≤ 4 y ≥ 5
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