
1

2

• In the mid eighties EA started making games for home computers
• Got into the console space in the nineties
• Through aquistions EA has turned into one of the world’s largest publishers and

developers
• Offices all over the world (Europe, North America, Oceania, South America and Asia)
• Very international working environment (on all levels)

3

• 9 people working from home initially, majority ex DICE Gothenburg
• Got entrusted with making the next NFS
• Rapid growth
• After ”exciting” process Rivals released in 2013 (360, PS3, XB1, PS4, and PC)

4

5

6

<TRAILER OF NFS 2015>

7

8

9

• We spend a lot of effort on getting the engine sounds correct in various
environments

10

• Large bodies of water not used in NFS, but in other Frostbite games

11

What fields of mathematics does this lead to?

12

13

14

15

• Integrate over time/space
• Differentiation to find gradients, normals
• Series to approximate complex expressions
• Generally not that common

16

• Rigid body simulation and constraints
• Lemke’s algorithm

17

• Delaunay triangulation
• Some rendering and physics algorithms have special demands on topology

18

• Importance sampling used in numerical integration of some rendering effects
• Sequences and distributions used in rendering algorithms (TAA, placement of

objects, sampling strategies)
• Also used in gameplay systems

19

• Spherical harmonics for light probes is also a form of compression over a spherical
domain

20

21

• Important to get right
• Floating point numbers are not magic
• Beware of cancellation
• Epsilon not magic bullet either

22

• Artists like predictable unpredictable 
• Real real-time, not academic real-time (budget ~2ms of GPU time)
• See “Real-Time Deformation and Fracture in a Game Environment” by Parker and

O’Brien for more details

23

24

<DEMONSTRATION MOVIE OF DEFORMATION SYSTEM>

25

26

27

• Nodes can be locked in place
• Control mesh can contain several shells
• We want to keep the engine block, wheel houses, and roll cage intact (shell shown

on the right)
• Setting the red component of vertex to zero locks it in place

28

• First step is to insert a number of random points inside the control mesh
• The number of points determine the size of the system that we’ll eventually have to

solve

29

• Next step is to generate a Delaunay triangulation
• A Delaunay triangulation is a triangulation where the circle that circumscribe each

triangle doesn’t contain any other vertex of the input data set

30

• So how do we generate the Delaunay triangulation?

31

• Apply a lifting transform, moves data from dimension N to dimension N + 1 (2D to
3D in this case)

32

• We use the quickhull algorithm to find the hull
• Points represented as rational numbers (could have used CGAL or predicates as well)

for exact tests
• Straight up floating point numbers are kryptonite to computational geometry

33

• When we project back we get the triangulation

34

• Idea, establish connection between no point inside circle in 2D, and no point below
plane in 3D

35

• The projection of the intersection of the plane passing through one of the faces of
the convex hull and the parabola defines a circle in the 2D plane. The only
projections of points on the parabola that end up inside this circle are the ones that
are below the plane, but since the plane is part of the convex hull, there are no such
points, which is what we wanted to show

36

• If we’re not happy with the shape of the elements we move the nodes and
triangulate again

• Wash, rinse, repeat, until satisfied (or for maximum number of iterations)

37

• Finally we remove the elements outside of the shells defined by the artists

38

• You need good geometric intuition to work with this

39

• a, v, x, and f are vectors of vectors
• M, C, and K are matrices of tensors
• M is the mass matrix, mass is attached to nodes (mass of each tetrahedron split

evenly among nodes)

40

• We want to solve for v_{i + 1}

41

• Equation system

42

• Hooke’s law relates strain to tension.
• Generalized spring

43

• Valid for small displacements
• Not rotationally invariant

44

45

• This means we have to rebuild stiffness matrix in each iteration though

46

• Handles inverted elements as well
• Incremental algorithm of McAdams

47

• Strain in space of rotated element
• Note for further slides, for orthonormal transform the inverse is the same as the

transpose

48

• Intuitively transform displacement into rotated system, compute force, and rotate
back

• Not sure about the force equation, it is not exactly consistent with what we use for
our virtual forces to enforce plasticity, but can’t remember why and didn’t have time
to reinvestigate for this presentation ¯_(ツ)_/¯

49

• K is sparse and the structure never changes
• We use a block compressed row format (spans) to store elements
• Each element in global K is a sum of tensors from the contributing edges
• System is originally symmetric and positive definite

50

• Position constraint can be turned into a velocity constraint
• Unfortunately this destroys the symmetry of the matrix
• No way to directly implement contact constraints

51

• Conjugate gradient theoretically requires the matrix to be symmetric, but in practice
it works well with non symmetric matrices as well

• The term stiff as used with numerical problems comes from the fact that solving
systems with stiff materials converges slower than soft materials

• We use a cheap diagonal Jacobi preconditioner to improve the condition of the
system

52

53

54

55

• The normals become skewed in relation the surface
• Same thing with tangents

56

• We already have this data available
• In addition to the whole vehicle deformation, we also have a system of “deformation

sensors” that can be used to do a rigid transformation of things like head lights etc.
Can also be used to trigger particle effects

57

<MOVIE DEMONSTRATING THE SYSTEM IN GAME>

58

59

60

