

A

GHOST

MATH IN GAMES

ANDREAS BRINCK

&)

ABOUIFEA

Founded in 1982 by Trip Hawkins

One of the worlds largest games developers

Owver 9000 employees all over the world

FFEA/Battlefield, Mass Effect, Need for Speed and many,
many/more...

* Inthe mid eighties EA started making games for home computers

* Got into the console space in the nineties

* Through aquistions EA has turned into one of the world’s largest publishers and
developers

» Offices all over the world (Europe, North America, Oceania, South America and Asia)

* Very international working environment (on all levels)

ABOUT GHOST

Founded in 2011
Responsible for Need for Speed

Offices in Guildford (17 people), Bucharest (20
people), and Gothenburg (123 people)

Need for Speed Rivals (2013)
Need for Speed (2015/2016)

* 9 people working from home initially, majority ex DICE Gothenburg

* Got entrusted with making the next NFS

* Rapid growth

* After “exciting” process Rivals released in 2013 (360, PS3, XB1, PS4, and PC)

DEVELOPMENT

» Game code is C++

» Very large code base (probably millions of lines of code, but
who'’s counting)

« Some tools are writtenin C# and python

WHAT MATH DO YOU NEED TO MAKE A GAME?

* Depends on the kind of game
» QOur niche is action driving games
« Math is the result of simulating various physical phenomena

+ We need a simulation of everything that is perceptible on a
human level

CHECKPO'NT 00:09:60 ¢

DRIFT ATTACK

<TRAILER OF NFS 2015>

OPTICS

How light interacts with.surfaces and mediums. in thelgame

weorld
Also simulation of some effects imfthe lens howuse of our virtual
camera (and image sensor/eye)

MECHANICS

 Foundation of game world is
a rigid body simulation

« Laws of Newton
e Constraints

 Various forces, i.e. collisions,
friction, gravity

ACOUSTICS

Propagation of sound waves

Doppler effect
Echoes
FE

* We spend a lot of effort on getting the engine sounds correct in various
environments

10

3

LUID DYNAMIES

» Simulation of@gvarious visual effects (particles)

- Simulation of Ta&rge bodies of water

A

Large bodies of water not used in NFS, but in other Frostbite games

11

What fields of mathematics does this lead to?

12

LINEAR ALGEBRA AND GEOMETRY

» By far the most used field of mathematics in games
development

13

BASIC APPLICATION

 Coordinate systems and transforms between them
» Construction of geometry

 Equation systems

» Collision detection

» Visibility testing

» Reflection and refraction of light

« Many more...

14

SLIGHTLY MORE ADVANCED

» Large equation systems (and solvers)
« Fitting of data sets

» Convex hulls

» Delaunay triangulations

* Quaternions (interpolation of orientation) \

15

CALCULUS

» Curves and surfaces (rendering and Al)
» Integrals (numerical / analytic)
» Differentiation (rendering and Al)

« Series

LO(x, wo, /\) t) = Le(xv Wo, /\1 t) i fr(xa Wi, Wo,)‘a t)Lt(xv Wi,)\, t)(wz - n)dwz

&

* Integrate over time/space

» Differentiation to find gradients, normals

* Series to approximate complex expressions
* Generally not that common

16

OPTIMIZATION

* Linear complimentarity problems (rigid body constraints)

Rigid body simulation and constraints
Lemke’s algorithm

17

GRAPH THEORY

» Shortest path algorithms (Al)
» Dual graph (triangulation)
» Basic topology (rendering/physics)

* Delaunay triangulation
* Some rendering and physics algorithms have special demands on topology

18

STATISTICS AND PROBABILITY

* Importance sampling (rendering)

« Distributions (rendering/gameplay/Al)

* Seqguences (ditto) i

Importance sampling used in numerical integration of some rendering effects
Sequences and distributions used in rendering algorithms (TAA, placement of
objects, sampling strategies)

Also used in gameplay systems

FOURIER ANALYSIS

« Compression of data (DCT, i.e. JPEG etc.)
» Spherical harmonics (light probes)
 QOcean simulation (Phillips spectrum)

» Water interaction

» Filters (rendering/audio)

= = ao. 0. © -
"N
* X8

x &

® &

.ur.wabo_k

o’
o Kk
s %

* Spherical harmonics for light probes is also a form of compression over a spherical
domain

20

(PARTIAL) DIFFERENTIAL EQUATIONS

» Mass spring systéems
* FEluid dynamics

« “Deformation

21

NUMERICAI=ANALYSIS

R

» Computational geometry.

» General stability

 Numerical'solutions

e &

Important to get right

Floating point numbers are not magic
Beware of cancellation

Epsilon not magic bullet either

22

CASE STUDY - VEHICLE-BEEORMATON

FEM Model

Developed for NFS 2015 but ultimately net.used (too
unpredictable)

Runs on the GPU as a compute shader

Artists like predictable unpredictable ©

Real real-time, not academic real-time (budget ~2ms of GPU time)

See “Real-Time Deformation and Fracture in a Game Environment” by Parker and
O’Brien for more details

23

IDEA

» Create a low fidelity control mesh

* Solve the equation system resulting from the discretized
model (FEM)

* Use the control mesh to deform the high fidelity mesh

24

<DEMONSTRATION MOVIE OF DEFORMATION SYSTEM>

25

MESH GENERATION

Will first describe algorithm, then why it works

Can'sometime be useful to reinvent the wheel (if it-isa small
wheel)

Will describe the algorithm in 2D and then explain how it can

be extended to 3D

26

INPUT DATA

 The input data is a polygonal control shell provided by our
artists

« Attributes can be specified with vertex colors

27

Nodes can be locked in place

Control mesh can contain several shells

We want to keep the engine block, wheel houses, and roll cage intact (shell shown
on the right)

Setting the red component of vertex to zero locks it in place

28

Seeding

&

* First step is to insert a number of random points inside the control mesh

* The number of points determine the size of the system that we’ll eventually have to

solve

29

Triangulation

&

* Next step is to generate a Delaunay triangulation
* A Delaunay triangulation is a triangulation where the circle that circumscribe each
triangle doesn’t contain any other vertex of the input data set

30

INPUT DATA - POINT SET

* So how do we generate the Delaunay triangulation?

31

LIFTING TRANSFORM

f:S = S()
(z,y) — (z,9,2° +9°)

* Apply a lifting transform, moves data from dimension N to dimension N + 1 (2D to
3D in this case)

32

COMPUTE CONVEX HULL

We use the quickhull algorithm to find the hull
Points represented as rational numbers (could have used CGAL or predicates as well)
for exact tests

Straight up floating point numbers are kryptonite to computational geometry

33

PROJECT LOWER PART

* When we project back we get the triangulation

34

MOTIVATION WHY THIS WORKS

« Claim: given p, g, r,and s, slies inside the circumcircle of p, g,
and riff sOis below the plane formed by pO, g0, and roO.

 Find plane equation for plane passing and tangent
to lifted (a, b).

z = 2ax+2by+k—

a®+b = 2a°+20°+k—
k= —(a2 +b2) —
z = 2az+2by — (aGRD?) @

* l|dea, establish connection between no point inside circle in 2D, and no point below
planein 3D

35

MOTIVATION WHY THIS WORKS

+ Offset the plane vertically:
z = 2az¥2by— (a®+b%) +p° —
’+9y° = 2az+2by— (a®+0b%)+p° —
(z—a)’+(y—b)? = p’

» Conclusion projection of intersection is a circle centered around
(a, b)with radius rho

* Points on the parabola below the plane is inside the circle

&

* The projection of the intersection of the plane passing through one of the faces of
the convex hull and the parabola defines a circle in the 2D plane. The only

projections of points on the parabola that end up inside this circle are the ones that
are below the plane, but since the plane is part of the convex hull, there are no such

points, which is what we wanted to show

36

Optimization

* If we're not happy with the shape of the elements we move the nodes and
triangulate again
* Wash, rinse, repeat, until satisfied (or for maximum number of iterations)

37

Outside Removal

'

Finally we remove the elements outside of the shells defined by the artists

38

HOW TO EXTEND TO 3D

Lift vertices from 3D to 4D, w = x2 + y2 +z2

In the 2D case the faces of the convex hull are 3D triangles, in
the 3D case the faces of the convex hull are 4D tetrahedrons

Exact same proof can be made for why this works in 3D, but
in this case the projection of the intersection and the plane
will be a sphere (In 3D the Delaunay condition is that the
circumsphere formed by the 4 tetrahedron vertices doesn’t
contain any other vertex)

&

* You need good geometric intuition to work with this

39

COUPLED SYSTEM OF EQUATIONS

Ma + Cv + K(x — u)

ext

&

a, v, X, and f are vectors of vectors
M, C, and K are matrices of tensors

M is the mass matrix, mass is attached to nodes (mass of each tetrahedron split

evenly among nodes)

40

INTEGRATOR

 Semi-implicit Euler method

Vislr = Vit ajaAt
Xis1 = Xj+ Vit
Majyy + Cvigyr + K(xi41 —u) = foxe —

Ma; 1At + Cvi 1 At + K(Xj41 — u)At = fo At —
A[(Vi+l - Vi) = CVi+1At ~+= I\'(xi + Vi+1At - U)At = fo At —

(M + CAt + KA?)viy1 = (foxt — K(x1 — u))At + Mv;

&

* We want to solve forv_{i + 1}

41

THIS LOOKS FAMILIAR

(M + CAt + KAL) Via|=|(foxe — K (1 —) At + Mvi]
A X b

&

* Equation system

42

HOW TO COMPUTE K

* Starting point:

o = Mr(e)l + 2ue

» Hooke’s law in 3D

* my and lambda can be derived from E (young modulus) and
Poisson’s ratio (see Lamé parameters)

« Cis adamping constant and can be calculated from K and M

* Hooke’s law relates strain to tension.
* Generalized spring

43

HOW DO WE FIND THE STRAIN?

» Cauchy’sinfinitesimal strain tensor

1
5=§(F—|-FT)—I

* F is the deformation gradient

* Valid for small displacements
* Not rotationally invariant

44

WHAT IS THE DEFORMATION GRADIENT

Uy

up

(8 5]

F = [x3 — x1,Xs — X3,Xq4 — X3|[uz — u3,us — 1y, uy — ul]_l

&

45

PROBLEM...

* Linear model, only valid for small deformations ®
» Solution, factor out rotation

» Polar decomposition:
F=UP
* (is unitary (and in our case orthogonal)

» Pis positive-semidefinite

* This means we have to rebuild stiffness matrix in each iteration though

46

POLAR DECOMPOSITION

* Singular value decomposition:

— P £ {SVD}
F wsvi —
U wvt

* Handles inverted elements as well
* Incremental algorithm of McAdams

a7

REMOVE ROTATION FROM STRESS CALCULATION

» Corotated deformation gradient:

F=U'F=UUP=P

» Corotated deformation strain:

é:%(I:“Jrﬁ’T)—I

» Corotated stress:

o = Mr(€)] + 2ué

&

* Strain in space of rotated element
* Note for further slides, for orthonormal transform the inverse is the same as the

transpose

48

JACOBIAN OF STRESS FORCE

» Force exerted on node i (Caveat Emptor!):
fi = U&ni

« KE is the Jacobian of f with respect to the node
displacements:

K[> = U(Ann{ + p(ni,ny) + pmyn)U"

* Intuitively transform displacement into rotated system, compute force, and rotate
back

* Not sure about the force equation, it is not exactly consistent with what we use for
our virtual forces to enforce plasticity, but can’t remember why and didn’t have time
to reinvestigate for this presentation "_(*/)_/~

49

ASSEMBLE THE GLOBAL STIFFNESS MATRIX

« Each KE will contribute to 16 elements in the global stiffness

matrix

*» Each element in the global matrix corresponds to an edge
and will get contributions from several mesh elements

Koo 0

0 Ky,
E
KOO i K03

ng) K33

L Kn-10 Ka-12

K is sparse and the structure never changes

We use a block compressed row format (spans) to store elements

Each element in global K is a sum of tensors from the contributing edges

System is originally symmetric and positive definite

50

CONSTRAINTS

We can fixate nodes by forcing velocity to O

Destroys symmetry of A but not a big problem

i AO,O AO,n—I [i bO i
0 0 0 9| va=] 0
An—l,O An—l,n—l bn—l

Position constraint can be turned into a velocity constraint
Unfortunately this destroys the symmetry of the matrix
No way to directly implement contact constraints

51

SOLVER

» Conjugate gradient

» Jacobi preconditioner
.. —b) =0

My O --- 0
0 M

0 M &

Conjugate gradient theoretically requires the matrix to be symmetric, but in practice
it works well with non symmetric matrices as well

The term stiff as used with numerical problems comes from the fact that solving
systems with stiff materials converges slower than soft materials

We use a cheap diagonal Jacobi preconditioner to improve the condition of the
system

WHAT ABOUT PLASTICITY?

 Will not cover in detail

» Basic idea is to separate the total strain into one plastic and
one elastic component

» Elastic part is what’s used in the force calculation

» Plastic part updated when material yield threshold is
exceeded

* Modeled as virtual internal forces to avoid updating data
structures

53

DEFORMATION OF VISUAL MESH

* Remember this?

» Each vertex in visual mesh holds an index to the element that
contains it

X4

U2

DEFORMATION OF POSITIONS
—X2 — X1 Xg — N

Uz —u; ug — Uy

55

DEFORMATION OF NORMALS (AND TANGENTS ETC.)

* Initial attempt was to transform with same matrix as for
positions (normals are homogenous coordinates with w = 0)

* Didn’t look good though:

T

* The normals become skewed in relation the surface
* Same thing with tangents

56

DEFORMATION OF NORMALS

» Solution: use the rotation extracted in the polar

decomposition of the deformation gradient

n=0Un

&

We already have this data available

In addition to the whole vehicle deformation, we also have a system of “deformation
sensors” that can be used to do a rigid transformation of things like head lights etc.

Can also be used to trigger particle effects

57

<MOVIE DEMONSTRATING THE SYSTEM IN GAME>

58

HOW TO GET A JOB IN GAMES

e Learn C++
* Learn math and physics

 Practice!

abrinck@ghostgames.com

@andreas_brinck

59

THANKS TO

* Andreas Lindqvist, awesome programmer at Ghost who
implemented the solver in a compute shader

* The vehicle artists at Ghost, in particular Christopher
Kristiansson

 Anders Logg, professor of computational mathematics at
Chalmers University of Technology

60

