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Abstract: The steel and glass British Museum Great Court Roof covers a rectangular area
of 70 by 100 metres containing the 44 metre diameter Reading Room. The paper describes
in detail how the spiralling geometry of the steel members was generated working closely
with the architects, Foster and Partners, and the engineers, Buro Happold A combination
of analytic and numerical methods were developed to satisfy architectural, structural and
glazing constraints. Over 3000 lines of computer code were specially written for the
project, mainly for the geometry definition, but also for structural analysis.

Introduction

Figure 1 is a computer generated image of the original scheme for the roof and this paper
will describe the process of generating the final geometry from this starting point.

Figure 1. Computer generated image of the original scheme

The British Museum Great Court is 73m east-west and 97m north-south. The centre of
the 44m diameter Reading Room is offset 3m to the north of the centre of the Court. The
space in the Court outside the Reading Room was used for temporary book store buildings,
but with the completion of the new British Library at St Pancras the book storage was no
longer required.
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The new roof over the Court was designed by Foster and Partners, architects, and
Buro Happold, engineers, and was fabricated and erected by Waagner Biro. The roof is
constructed of a triangular grid of steel members welded to node pieces. The members are
boxes welded from plate and are tapered to change depth. The grid is triangulated for
structural stiffness and so that it can be glazed with one flat panel of double glazing for
each triangle of the structural grid.

The roof is supported around the Reading Room and on the rectangular boundary
where  it sits on sliding bearings to avoid imposing lateral thrusts on the existing building.
This means that the roof can only push outwards at the corners where it can be resisted by a
tension in the edge beam. Internal tension ties were considered, but rejected on architectural
grounds.

The surface geometry

The shape of the roof is defined by a surface on which the nodes of the steel grid lie. The
height of the surface, z,  is a function of x in the easterly direction and y in the northerly
direction. The origin lies on a vertical line through the centre of the Reading Room. The
function is:     z = z1 + z2 + z3  where 

    
z1 = hcentre - hedge( )h + hedge ,
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In these expressions the polar co-ordinates,     r = x2 + y2  and 
    
q = cos-1 x
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The constants are     a = 22.245 ,     b = 36.625 ,     c = 46.025,     d = 51.125 ,   l = 0.5,   m = 14.0 ,

    hcentre = 20.955  and     hedge = 19.71 .
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The functions     z1 ,     z2  and     z3  are each built up from its own fundamental function. The
first, shown in figure 2, supplies the correct change in level between the rectangular
boundary and the circular Reading Room. The vertical scale in the figure is chosen
arbitrarily. The original scheme had the roof level arching up along each of the rectangle
edges, and this would have had certain structural advantages, but the final scheme has a
constant height along the edges. The remaining two fundamental functions give     z = 0
around the rectangular and circular boundaries.

 
Figure 2. Level change function,          Figure 3. Function with finite curvature at corners
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Figure 4. Function with conical corners

    

1 -
a
r

b - x( )2
+ c - y( )2

b - x( ) c - y( )
+

b - x( )2
+ d + y( )2

b - x( ) d + y( )
+

b + x( )2
+ c - y( )2

b + x( ) c - y( )
+

b + x( )2
+ d + y( )2

b + x( ) d + y( )

Figure 5. Final surface
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The second fundamental function is shown in figure 3. Both this function and the first
produce a horizontal surface at the corners. This is inevitable unless the curvature tends to
infinity at the corners, like approaching the tip of a cone and this is what happens with the
third fundamental function shown in figure 4.

The issue of the curvature of the corners was important for architectural and structural
reasons and the relative amount of the second and third fundamental functions was chosen
to balance these constraints. The corners were important structurally because of the thrusts
coming down to the corners to be balanced by tensions in the edge beam. The corners are
reinforced locally by external trusses which cannot be seen from inside the Court.

The final shape was obtained by adding a constant times the first fundamental
function to the second and third fundamental functions multiplied by two different
functions of x and y. These extra functions were chosen to satisfy planning, architectural
and structural constraints.

Figure 5 shows the final surface on which the faceting is that of the glazing grid. The
concentration of curvature at the corners can be seen.

The structural grid

The structural grid passed through many stages before arriving at the final form as shown in
the right hand drawing in figure 6. In the early scheme on the left of figure 6 the grid meets
the rectangular boundary in an unsatisfactory way in that some triangles are cut through,
leading to a combination of triangles and quadrilaterals. The central drawing overcomes
this problem, but is still coarse compared to the final form.

The starting point in producing the final grid is shown in figure 7. This is a simple
geometric drawing in which points equally spaced around the Reading Room are joined to
equally spaced points around the rectangular boundary. The radial lines so formed are then
divided into varying numbers of equal segments. The structural grid is produced from this
‘mathematical grid’ by ‘joining the dots’ as seen in the right hand half of figure 7.

  
Figure 6. Evolution of the structural grid

However this produces discontinuities, particularly on the diagonal directions. These
were removed by ‘relaxing’ the grid to produce figure 8. The relaxation process was as
follows.
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Figure 7. Starting grid

Figure 9 shows a typical node, i, j of the mathematical grid surrounded by its four
neighbours. If       pi, j is the position vector of the typical node at some point during the

relaxation process, then

      
fi, j = pi-1, j - pi, j( ) + pi+1, j - pi, j( ) + 2 - z( ) pi, j-1 - pi, j( ) + z pi, j+1 - pi, j( )

would be the fictitious force applied to the node by ‘strings’ attached to the neighbouring
nodes if the tension coefficients of the strings are 1, 1, 

  
2 - z( )  and z . The tension

coefficient is the tension in a member divided by its length. The purpose of the variable z
will be described later.

Now imagine that the nodes of the mathematical grid are free to slide with no friction

over the surface defining the shape. The force 
      
qi, j = fi, j - fi, j • ni, j( )ni, j  (where       ni, j  is the

unit normal to the surface) is the component of       fi, j  tangential to the surface and therefore

the nodes will slide until all the       qi, j = 0 .

The quantity 
    
z = 1- 0.004 1.5m - j( ) 1- cos 2q( )  where     m = 70  is the value of j on the

Reading Room boundary and q is the polar co-ordinate. This function was chosen so as to
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control the maximum size of the glass triangles which occur near the centre of the southern
boundary. It was the limitation on glass size which was the controlling factor in choosing
the structural grid.

Figure 8. Relaxed grid

i-1, j
i, j-1

i+1, j
i, j+1

i, j

 
Figure 9. Typical grid nodes               Figure 10. Elevation of structural grid looking north

The non-linear equations       qi, j = 0  were solved by repeated application of the

algorithm 
      
dpi, j( )

this cycle
= c1qi, j + c2 dpi, j( )

the previous cycle
 where       dpi, j  is the movement of

the typical node and the constants     c1  and     c2 £ 1.0  are chosen to optimise the speed of
convergence. The larger the constants, the faster the convergence, but if they are too high,
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numerical instability occurs. This process is known as dynamic relaxation and was invented
by Alister Day. The whole mathematical grid was run through 5000 cycles before the
process was judged to have converged. Convergence was speeded by using setting     c2 = 0

when the sum of the squares of the       dpi, j  passed through a maximum.

Figures 10, 11 and 12 show the final structural grid.

Figure 11. Elevation of structural grid looking west

Figure 12. Isometric of structural grid

Figure 13. Outwards deflections due to loading



8

Figure 14. View showing south side collapsed while north remains standing

Structural analysis

A detailed description of the structural analysis of the roof is beyond the scope of this
paper. A specially written computer program was used, together with commercial software.
Figures 13 and 14 show the deflections due to a large vertical load, much larger than
possible on the roof. The spreading of the boundaries can be seen on the plan and on figure
14 it can be seen that the south side has collapsed, hanging in tension, while the north side
still stands.

                         
Figure 15. Day and night views

Conclusion

This paper discusses one aspect of one project and figure 15 contains photographs of the
completed Great Court. Papers by the architects, engineers and builders of this and other
recent projects are contained in Barnes and Dickson (2000).
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