Problem set 1.

Problem 1.1. Write down the weak formulation of the following initial-boundary value problem:

$$
\left\{\begin{array}{l}
D_{t} u(x, t)-D_{x}\left(\left(1+x^{2}\right) D_{x} u(x, t)\right)=t\left(1-x^{2}\right) \quad \text { in }(-1,1), t>0, \\
u(-1, t)=1, \quad u^{\prime}(1, t)+2 u(1, t)=5, \quad t>0, \\
u(x, 0)=e^{x} .
\end{array}\right.
$$

Problem 1.2. Solve the following boundary value problem by integrating twice:

$$
\left\{\begin{array}{l}
-\mathrm{D}((2-x) \mathrm{D} u)=x^{2}+x \quad \text { in }(0,1) \\
u^{\prime}(0)=1, \quad u^{\prime}(1)+3 u(1)=2
\end{array}\right.
$$

Problem 1.3. Find the volume of the solid that lies above the rectangle $R=[1,3] \times[1,2]$ and below the surface $z=\frac{1}{1+x+y}$.
Problem 1.4. Read Example 5 in Section 15.3 from the book (Stewart). Then, following a similar approach, evaluate the integral

$$
\int_{0}^{1} \int_{x}^{1} e^{x / y} \mathrm{~d} y \mathrm{~d} x
$$

Problem 1.5. Evaluate

$$
\iiint_{E} \cos y \mathrm{~d} V
$$

where E lies below the plane $z=x$ and above the triangular region with vertices $(0,0,0),(\pi, 0,0)$ and ($0, \pi, 0$).

