MVE515 Computational Mathematics-Bonus Point Problem Set 2

Problem set 2.

Problem 2.1. Find the volume above the rectangle enclosed by the lines $x-y=0, x-y=1$, $x+y=0$, and $x+y=2$ and under the surface $f(x, y)=(x+y) e^{x^{2}-y^{2}}$. Hint: use an appropriate change of variables when calculating the double integral associated with the problem.

Problem 2.2. Use the transformation $x=u^{2}, y=v^{2}, z=w^{2}$ to find the volume of the region bounded by the surface $\sqrt{x}+\sqrt{y}+\sqrt{z}=1$ and the coordinate planes.
Problem 2.3. Let C is a smooth curve given by $x=g(t), y=h(t), a \leq t \leq b$ and let $-C$ be given by $x=g(a+b-t), y(t)=h(a+b-t), a \leq t \leq b$. Let f be a continuous function on C. Show the following equalities.
(a)

$$
\int_{-C} f(x, y) \mathrm{d} x=-\int_{C} f(x, y) \mathrm{d} x
$$

(b)

$$
\int_{-C} f(x, y) \mathrm{d} y=-\int_{C} f(x, y) \mathrm{d} y
$$

(c)

$$
\int_{-C} f(x, y) \mathrm{d} s=\int_{C} f(x, y) \mathrm{d} s
$$

Hint: Use Formulas 3 and 7 from Section 16.2.
Problem 2.4. The base of a circular fence with radius 5 m is given by

$$
x=5 \cos t, \quad y=5 \sin t, \quad 0 \leq t \leq 2 \pi
$$

The height of the fence at position (x, y) is given my the function $h(x, y)=3+0.04\left(x^{2}-y^{2}\right)$. Suppose that 1 L of paint covers $50 \mathrm{~m}^{2}$. Determine how much paint you will need to paint both sides of the fence.

Problem 2.5. The force field exerted by an electric charge at the origin on a charged particle at a point (x, y, z) with position vector $\mathbf{r}=\langle x, y, z\rangle$ is $\mathbf{F}(\mathbf{r})=K \frac{\mathbf{r}}{|\mathbf{r}|^{3}}$, where K is a constant. Find the work done when the particle moves along a straight line from $(0,2,0)$ to $(1,2,4)$.

