Problem set 3.

Problem 3.1. Let C is a smooth curve given by $x=g(t), y=h(t), z=l(t), a \leq t \leq b$, and let $-C$ be given by $x=g(a+b-t), y=h(a+b-t), z=l(a+b-t), a \leq t \leq b$. Prove that if $\mathbf{F}=P \mathbf{i}+Q \mathbf{j}+R \mathbf{k}$ is a continuous vector field on C, then

$$
\int_{-C} \mathbf{F} \mathrm{~d} \mathbf{r}=-\int_{C} \mathbf{F} \mathrm{~d} \mathbf{r} .
$$

Problem 3.2. A particle starts at the point $(-1,0)$ and moves along the x-axis to $(1,0)$, then along to the semicircle $y=-\sqrt{1-x^{2}}$ to the starting point. Use Green's Theorem (be careful with the orientation) to find the work done on this particle by the force field

$$
\mathbf{F}(x, y)=\left\langle x, x^{3}+3 x y^{2}\right\rangle
$$

Problem 3.3. Let $\mathbf{r}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$. If $\mathbf{F}=\frac{\mathbf{r}}{|\mathbf{r}|^{p}}$, find $\operatorname{div} \mathbf{F}$. Is there a value for p for which $\operatorname{div} \mathbf{F}=0$?

Problem 3.4. Determine whether the vector field $\mathbf{F}(x, y, z)=\left(y-z^{2} \sin x\right) \mathbf{i}+x \mathbf{j}+2 z \cos x \mathbf{k}$ is conservative. If yes, then find the general form of the potential f of \mathbf{F}.

Problem 3.5. Find the area of the part of the sphere $x^{2}+y^{2}+z^{2}=2$ that lies inside the cylinder $x^{2}+y^{2}=1$.

