Problem set 4.

Problem 4.1. Verify that Stokes' Theorem is true for the vector field $\mathbf{F}(x, y, z)=y^{2} z \mathbf{i}-2 y \mathbf{j}+x \mathbf{k}$ where S is the part of the paraboloid $x^{2}+y^{2}=z$ that lies below the plane $z=4$ and oriented downward.

Problem 4.2. Suppose that $\mathbf{v}(x, y, z)=\left(z^{2}+y^{2}+\sin \left(x^{2}\right)\right) \mathbf{i}+(2 x y+z) \mathbf{j}+(x z+2 y z) \mathbf{k}$ represents the velocity field of a fluid. Find the circulation of \mathbf{v} around the simple closed curve C (oriented counterclockwise when viewed from above) that is the intersection of the elliptic cylinder

$$
(x-1)^{2}+4 y^{2}=16
$$

and the plane $2 x+y+z=3$. Hint: Use Stoke's Theorem and a suitable change of variables when calculating the double integral.

Problem 4.3. Verify that the Divergence Theorem is true for the vector field

$$
\mathbf{F}(x, y, z)=x^{2} \mathbf{i}+y^{2} \mathbf{j}+z^{2} \mathbf{k}
$$

where E is the ball with radius a centred at the origin.
Problem 4.4. Let C be a piecewise smooth, simple closed curve given by

$$
\mathbf{r}(\mathbf{t})=x(t) \mathbf{i}+y(t) \mathbf{j}+z(t) \mathbf{k}, \quad d \leq t \leq e
$$

in \mathbf{R}^{3} which lies in a plane with unit normal vector $\mathbf{n}=a \mathbf{i}+b \mathbf{j}+c \mathbf{k}$ and has positive orientation inherited from that plane. Show that the plane area enclosed by C is

$$
\frac{1}{2} \int_{C}(b z-c y) \mathrm{d} x+(c x-a z) \mathrm{d} y+(a y-b x) \mathrm{d} z
$$

