MVE515 Computational Mathematics - Exam

Date: Saturday, 28 October
Time: 8.30-12.30
Room: SB3

- Telephone contact during the exam: Milo Viviani, ext. 5325.
- The final exam is worth 50 points. 20 points are required for a pass grade 3,30 points for grade 4 , and 40 points for grade 5 . The bonus points gathered during the course is added to your exam total.
- Aid: you may use the supplied formula sheet.
- Solutions will be announced after the end of the exam on the course homepage.
- You may view the exams on Wednesday, November 22, 10.30-12.30 in MV:L15.

Problem 1.

(a) Write down the weak formulation of the following boundary value problem:

$$
\left\{\begin{array}{l}
-\mathrm{D}((2 x+1) \mathrm{D} u)=4 x+1, \quad x \in(0,1) \tag{5p}\\
-u^{\prime}(0)+2 u(0)=1, \quad u(1)=0
\end{array}\right.
$$

(b) Solve the boundary value problem from (a) by integrating twice.

Problem 2. Determine whether the vector field

$$
\begin{equation*}
\mathbf{F}(x, y, z)=y^{2} z^{3} \mathbf{i}+2 x y z^{3} \mathbf{j}+3 x y^{2} z^{2} \mathbf{k} \tag{7p}
\end{equation*}
$$

is conservative. If yes, then find the general form of the potential f of \mathbf{F}.

Problem 3. Verify that Stoke's Theorem holds for the vector field

$$
\begin{equation*}
\mathbf{F}(x, y, z)=-y \mathbf{i}+x \mathbf{j}-2 \mathbf{k} \tag{8p}
\end{equation*}
$$

where S is the cone $z^{2}=x^{2}+y^{2}, 0 \leq z \leq 4$ oriented downward.

Problem 4. Verify that the Divergence Theorem holds for the vector field

$$
\begin{equation*}
\mathbf{F}(x, y, z)=\left\langle x^{2}, x y, z\right\rangle \tag{10p}
\end{equation*}
$$

and the solid E bounded by the paraboloid $z=4-x^{2}-y^{2}$ and the $x y$-plane.

Problem 5.

(a) Write down the boundary value problem for the 2 D stationary heat equation on the triangle with vertices with $P_{1}=(1,0), P_{2}=(1,1), P_{3}=(0,1)$, where the heat conductivity is equal to $2+x+y$, the heat source density is equal to $1+x y$, and the ambient temperature is equal to constant 2 on all sides. The heat transfer coefficient is equal to $y+x-1$ at the boundary. There is no prescribed heat influx at the boundary.
(b) Write down the weak formulation of the problem.
(c) Write down the finite element basis functions $\phi_{1}, \phi_{2}, \phi_{3}$ for a triangulation that consists of a single triangle $T=\Omega$ with nodes $P_{1}=(1,0), P_{2}=(1,1), P_{3}=(0,1)$.
(d) Compute the element a_{13} of the stiffness matrix

$$
a_{i j}=a_{j i}=\iint_{\Omega} \lambda \nabla \phi_{i} \cdot \nabla \phi_{j} \mathrm{~d} A+\int_{\Gamma} \kappa \phi_{i} \phi_{j} \mathrm{~d} s
$$

