Problem 1.1.

(a) Write down the weak formulation of the following boundary value problem:

$$
\left\{\begin{array}{l}
-\mathrm{D}((x+1) \mathrm{D} u)=2 x+1 \quad x \in(0,1) \\
u(0)=1, \quad u^{\prime}(1)+3 u(1)=2
\end{array}\right.
$$

(b) Solve the boundary value problem from (a) by integrating twice.

Problem 1.2. Determine whether the vector field

$$
\mathbf{F}(x, y, z)=\mathbf{i}+\sin z \mathbf{j}+y \cos z \mathbf{k}
$$

is conservative. If yes, then find the general form of the potential f of \mathbf{F}.

Problem 1.3. Verify that Stoke's Theorem is true for the vector field

$$
\mathbf{F}(x, y, z)=-2 y z \mathbf{i}+y \mathbf{j}+3 x \mathbf{k}
$$

where S is the part of the paraboloid $z=5-x^{2}-y^{2}$ that lies above the plane $z=1$, oriented upward.

Problem 1.4. Verify that the Divergence Theorem is true for the vector field

$$
\mathbf{F}(x, y, z)=\left\langle x^{2},-y, z\right\rangle
$$

and the solid cylinder E given by $y^{2}+z^{2} \leq 9$ and $0 \leq x \leq 2$.
Problem 1.5.
(a) Write down the boundary value problem for the 2 D stationary heat equation on the triangle vertices with $P_{1}=(0,0), P_{2}=(0,1), P_{3}=(1,1)$, with heat conductivity equals $3-x-y$, constant heat source density equals 2 , and constant ambient temperature equals 4 on all sides. The heat transfer coefficient equals $y-x$ at the boundary. There is no prescribed heat influx at the boundary.
(b) Write down the weak formulation of the problem.
(c) Write down the finite element basis functions $\phi_{1}, \phi_{2}, \phi_{3}$ for a triangulation that consists of a single triangle $T=\Omega$ with nodes $P_{1}=(0,0), P_{2}=(0,1), P_{3}=(1,1)$.
(d) Compute the elements of the stiffness matrix

$$
a_{i j}=a_{j i}=\iint_{\Omega} \lambda \nabla \phi_{i} \cdot \nabla \phi_{j} \mathrm{~d} A+\int_{\Gamma} \kappa \phi_{i} \phi_{j} \mathrm{~d} s
$$

(e) Compute the elements of the load vector

$$
b_{j}=\iint_{\Omega} f \phi_{j} \mathrm{~d} A+\int_{\Gamma}\left(g+\kappa u_{A}\right) \phi_{j} \mathrm{~d} s .
$$

(f) If the vector

$$
\boldsymbol{U}=\left[\begin{array}{l}
U_{1} \\
U_{2} \\
U_{3}
\end{array}\right]
$$

contains the nodal values of the finite element solution of the boundary value problem, write down the linear system of equations that needs to be solved to determine \mathcal{U}.

Problem 1.6. Write down the weak formulation of the following initial-boundary value problem in 3D.

$$
\left\{\begin{aligned}
\partial_{t} u(x, y, z, t)-\Delta u(x, y, z, t) & =0, \quad(x, y, z) \in \Omega, \quad t>0, \\
u(x, y, z, t) & =u_{\mathrm{A}}, \quad(x, y, z) \in \Gamma_{1}, \quad t>0, \\
\mathrm{D}_{N} u(x, y, z, t)+u(x, y, z, t) & =g(x, y, z, t), \quad(x, y, z) \in \Gamma_{2}, \quad t>0, \\
u(x, y, z, 0)=u_{0}(x, y, z), &
\end{aligned}\right.
$$

where $\Delta u=\nabla \cdot \nabla u$ and $\Gamma=\Gamma_{1} \cup \Gamma_{2}$ (Γ_{1} and Γ_{2} are non-overlapping).

