MVE515 Computational Mathematics - Re-exam

Date: Wednesday, 20 December
Time: 14.00-18.00

- Telephone contact during the exam: Robert Forslund, ext 5325.
- The final exam is worth 50 points. 20 points are required for a pass grade 3,30 points for grade 4 , and 40 points for grade 5 . The bonus points gathered during the course is added to your exam total.
- Aid: you may use the supplied formula sheet.

Problem 1. Write down the weak formulation of the following boundary value problem:

$$
\left\{\begin{array}{l}
-\left(\cos (x) u^{\prime}(x)\right)^{\prime}=1+x^{2} \quad x \in(0,1) \tag{7p}\\
-u^{\prime}(0)=1, \quad \cos (1) u^{\prime}(1)+u(1)=1
\end{array}\right.
$$

Problem 2. Evaluate

$$
\iiint_{E} e^{y} \mathrm{~d} V
$$

where E lies below the plane $z=x$ and above the triangular region with vertices $(0,0,0),(1,0,0)$ and ($0,1,0$).

Problem 3. Let $\mathbf{r}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k},|r|=\sqrt{x^{2}+y^{2}+z^{2}}$ and $\mathbf{F}(x, y, z)=\frac{\mathbf{r}}{|\mathbf{r}|^{3}}$. Find its general potential function.

Problem 4. Find the surface area of the part of the sphere $x^{2}+y^{2}+z^{2}=4$ that lies outside the cylinder $x^{2}+y^{2}=1$.

Problem 5. Use Stokes' Theorem to evaluate $\int_{C} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}$ where $\mathbf{F}(x, y, z)=y z \mathbf{i}+2 x z \mathbf{j}+e^{x y} \mathbf{k}$ and C is the circle $x^{2}+y^{2}=16, z=5$, oriented counter clockwise when viewed from above. (6p)

Problem 6. Let $\mathbf{F}=P \mathbf{i}+Q \mathbf{j}+R \mathbf{k}$ be a vector field on \mathbb{R}^{3} with continuously differentiable components and let f be a continuously differentiable scalar field on \mathbb{R}^{3}. Show that

$$
\begin{equation*}
\operatorname{div}(f \mathbf{F})=f \operatorname{div} \mathbf{F}+\mathbf{F} \cdot \nabla f \tag{5p}
\end{equation*}
$$

Please turn over!

Problem 7. Write down the weak formulation of the following boundary value problem in 3D.

$$
\left\{\begin{aligned}
-\nabla \cdot(a \nabla u)+c u & =f \quad \text { in } \Omega, \\
u & =u_{\mathrm{A}} \quad \text { on } \Gamma_{1}, \\
a \mathrm{D}_{N} u & =g \quad \text { on } \Gamma_{2},
\end{aligned}\right.
$$

where a, c, f, g are functions, u_{A} is a constant and $\Gamma=\Gamma_{1} \cup \Gamma_{2}\left(\Gamma_{1}\right.$ and Γ_{2} are non-overlapping $)$.

Problem 8.

(a) Write down the finite element basis functions $\phi_{1}, \phi_{2}, \phi_{3}$ for a triangulation that consists of a single triangle $T=\Omega$ with nodes $P_{1}=(0,0), P_{2}=(-1,1), P_{3}=(0,1)$.
(b) Compute the element m_{12} of the mass matrix

$$
m_{i j}=m_{j i}=\iint_{\Omega} \phi_{i} \phi_{j} \mathrm{~d} A
$$

