MVE515 Computational Mathematics - Re-exam

Date: Tuesday, 21 August 2018
Time: 14.00-18.00

- Telephone contact during the exam: Olof Elias, ext 5325 .
- The final exam is worth 50 points. 20 points are required for a pass grade 3,30 points for grade 4 , and 40 points for grade 5 . The bonus points gathered during the course is added to your exam total.
- Aid: you may use the supplied formula sheet.

Problem 1. Solve the following boundary value problem by integrating twice:

$$
\left\{\begin{array}{l}
-\mathrm{D}((2-x) \mathrm{D} u)=x^{2} \quad \text { in }\left(1, \frac{3}{2}\right) \tag{7p}\\
u(1)=1, \quad \mathrm{D} u\left(\frac{3}{2}\right)=0
\end{array}\right.
$$

Problem 2. Evaluate the integral

$$
\begin{equation*}
\int_{0}^{1} \int_{x}^{1} \cos \left(\frac{x}{y}\right) \mathrm{d} y \mathrm{~d} x \tag{7p}
\end{equation*}
$$

Problem 3. A particle starts at the point $(1,0)$ and moves along the x-axis to $(-1,0)$, then along to the semicircle $y=\sqrt{1-x^{2}}$ to the starting point. Use Green's Theorem to find the work done on this particle by the force field

$$
\begin{equation*}
\mathbf{F}(x, y)=\left\langle 2 x, x^{2}+3 x y^{2}\right\rangle \tag{7p}
\end{equation*}
$$

Problem 4. Verify that Stokes' Theorem is true for the vector field $\mathbf{F}(x, y, z)=y^{2} z \mathbf{i}-2 y \mathbf{j}+x \mathbf{k}$ where S is the part of the paraboloid $x^{2}+y^{2}=4 z$ that lies below the plane $z=1$ and is oriented upward.

Problem 5. Evaluate

$$
\iiint_{E} z \mathrm{~d} V
$$

where E is the solid tetrahedron bounded by the four planes $x=0, y=0, z=0$ and $x+y+z=1$.

Problem 6.

(a) Write down the boundary value problem for the 2 D stationary heat equation on the triangle vertices with $P_{1}=(0,0), P_{2}=(1,0), P_{3}=(1,1)$, with heat conductivity equals $1+x+y$, constant heat source density equals 2 , and constant ambient temperature equals 1 on all sides. On the boundary $x=1$ the heat transfer coefficient equals 2 , on the boundary $y=0$ the heat transfer coefficient equals 1 , while on the rest of the boundary it equals 0 . There is no prescribed heat influx at the boundary.
(b) Write down the weak formulation of the problem.
(c) Write down the finite element basis functions $\phi_{1}, \phi_{2}, \phi_{3}$ for a triangulation that consists of a single triangle $T=\Omega$ with nodes $P_{1}=(0,0), P_{2}=(1,0), P_{3}=(1,1)$.
(d) Compute the element

$$
b_{2}=\iint_{\Omega} f \phi_{2} \mathrm{~d} A+\int_{\Gamma}\left(g+\kappa u_{A}\right) \phi_{2} \mathrm{~d} s
$$

of the load vector.

