MVE515 Computational Mathematics-Recommended Problem Set 1

Problems

Write down the weak formulation of the following boundary value problems.
Problem 1.1.

$$
\left\{\begin{array}{l}
-u^{\prime \prime}=f \quad \text { in }(0, L), \\
-u^{\prime}(0)+u(0)=g_{0}, \quad u(L)=0
\end{array}\right.
$$

Tips: $v(L)=0$.
Problem 1.2.

$$
\left\{\begin{array}{cl}
-u^{\prime \prime}=f & \text { in }(0, L) \\
u(0)=1, & u(L)=2
\end{array}\right.
$$

Tips: $v(0)=0$ and $v(L)=0$.

Problem 1.3.

$$
\left\{\begin{array}{l}
-u^{\prime \prime}=f \quad \text { in }(0, L) \\
-u^{\prime}(0)+5 u(0)=1, \quad u^{\prime}(L)=1
\end{array}\right.
$$

Problem 1.4.

$$
\left\{\begin{array}{l}
-\left(\cos (x) u^{\prime}(x)\right)^{\prime}=x^{2} \quad x \in(0,1) \\
u(0)=0, \quad \cos (1) u^{\prime}(1)+u(1)=1
\end{array}\right.
$$

Tips: $v(0)=0$.
Solve the following boundary value problems by integrating twice.
Problem 1.5.

$$
\left\{\begin{array}{cl}
-u^{\prime \prime}=1 & \text { in }(0,1) \\
u(0)=0, & u(1)=0
\end{array}\right.
$$

Problem 1.6.

$$
\left\{\begin{array}{l}
-\mathrm{D}((1+x) \mathrm{D} u)=2 x \quad \text { in }(0,1) \\
-\mathrm{D} u(0)+u(0)=0, \quad u(1)=\frac{3}{2}
\end{array}\right.
$$

Problem 1.7.

$$
\left\{\begin{array}{l}
-\mathrm{D}(a \mathrm{D} u)=0 \quad \text { in }(0, L) \text { with constant } a>0 \\
u(0)=u_{0}, \quad u(L)=u_{L}
\end{array}\right.
$$

Calculate also the heat flux density $j=-a \mathrm{D} u$.
Problem 1.8.

$$
\left\{\begin{array}{l}
-a u^{\prime \prime}+u^{\prime}=1 \quad \text { in }(0,1) \text { with constant } a>0 \\
u(0)=0, \quad u(1)=0
\end{array}\right.
$$

Answers and solutions

1.1. Find $u=u(x)$ such that $u(L)=0$ and

$$
\int_{0}^{L} u^{\prime} v^{\prime} \mathrm{d} x+u(0) v(0)=\int_{0}^{L} f v \mathrm{~d} x+g_{0} v(0) \quad \text { for all } v \text { with } v(L)=0
$$

1.2. Find $u=u(x)$ such that $u(0)=1$ and $u(L)=2$ and

$$
\int_{0}^{L} u^{\prime} v^{\prime} \mathrm{d} x=\int_{0}^{L} f v \mathrm{~d} x \quad \text { for all } v \text { with } v(0)=v(L)=0
$$

1.3. Find $u=u(x)$ such that

$$
\int_{0}^{L} u^{\prime} v^{\prime} \mathrm{d} x+5 u(0) v(0)=\int_{0}^{L} f v \mathrm{~d} x+v(0)+v(L) \quad \text { for all } v
$$

1.4. Find $u=u(x)$ such that $u(0)=0$ and

$$
\int_{0}^{1} \cos x u^{\prime}(x) v^{\prime}(x) \mathrm{d} x+u(1) v(1)=\int_{0}^{1} x^{2} v(x) \mathrm{d} x+v(1) \quad \text { for all } v \text { with } v(0)=0
$$

1.5. $u(x)=\frac{1}{2} x(1-x)$
1.6, $u(x)=-\frac{1}{2} x^{2}+x+1$
1.7. $u(x)=\left(u_{L}-u_{0}\right) \frac{x}{L}+u_{0}, j=-a j^{\prime}(x)=a\left(u_{0}-u_{L}\right) \frac{1}{L}$. Note that the heat flux density is constant and is proportional to the temperature difference.
1.8. One integration yields $u^{\prime}-\frac{1}{a} u=-\frac{1}{a}(x+C)$. Multiply with the integrating factor $e^{-x / a}$ and integrate again. The solution is $u(x)=x-\left(e^{x / a}-1\right) /\left(e^{1 / a}-1\right)$.

