
CTH/GU Mathematical Sciences MVE515 - 2017/2018

FINITE ELEMENT METHOD IN 1D – PART 1

We have in previous courses in mathematics solved differential equations both
analytically (with pen and paper) and numerically (with a computer). Usually we
have to be satisfied with a numerical solution, at least when the problem is a bit
more complicated. In this computer lab we shall study the finite element method
for the numerical solution of boundary value problems.

We only consider problems in one dimension for this lab. However, the methods
we consider here can easily be extended to problems in two or three dimensions.

In the next computer lab, we will consider time-dependent problems, the heat
and wave equations.

1. Boundary value problems

We consider the following second order differential equation on the interval (a, b),

− (cu′)′ = f in (a, b) (1a)

where c and f are given functions. We consider different types of boundary condi-
tions at the endpoints of the interval,

u(a) = ua

c(b)u′(b) = qb,
(1b)

where ua and qb are given scalar values. The boundary condition where the value
of the solution is prescribed, in our case u(a) = ua, is called a Dirichlet bound-
ary condition. The boundary condition, where the flux is prescribed, in our case
c(b)u′(b) = qb, is called a Neumann boundary condition.

The first step to solve the boundary value problem (1) is to reformulate it as a
variational problem. To do this, we multiply the equation in (1a) with a smooth
test function v and integrate over the interval (a, b),

−
∫ b

a
(cu′)′v dx =

∫ b

a
fv dx. (2)

Now we carry out integration by parts on the left hand side to get

−
∫ b

a
(cu′)′v dx = −

[
cu′v

]b
a

+

∫ b

a
cu′v′ dx

= −c(b)u′(b)v(b) + c(a)u′(a)v(a) +

∫ b

a
cu′v′ dx.

If we choose the test function v such that v(a) = 0, and make use of the Neumann
boundary condition at the right endpoint b, we can rearrange the terms in (2) to

1

FINITE ELEMENT METHOD IN 1D – PART 1 2

obtain ∫ b

a
cu′v′ dx =

∫ b

a
fv dx+

=qb︷ ︸︸ ︷
c(b)u′(b) v(b)− c(a)u′(a)

=0︷︸︸︷
v(a)

=

∫ b

a
fv dx+ qbv(b).

(3)

Since v was an arbitrary test function with v(a) = 0, equation (3) must hold for
any (reasonable) choice of v. To make a more precise statement, we introduce the
function spaces1

V =
{
v :

∫
v2 + (v′)2 dx <∞ and v(a) = ua

}
, (4a)

V̂ =
{
v :

∫
v2 + (v′)2 dx <∞ and v(a) = 0

}
. (4b)

With this notation, the weak (or variational) formulation of the problem reads: Find
u ∈ V such that ∫ b

a
cu′v′ dx =

∫ b

a
fv dx+ qbv(b) ∀v ∈ V̂ . (5)

The weak (or variational) formulation (5) has several advantages over the original
(strong) formulation (1). For example, we only have first order derivatives in the
variational formulation and no derivative on the coefficient c. However, the two
formulations are not completely equivalent – a solution to the variational problem
is not necessarily a solution to the original problem, and vice versa.

2. Deriving the finite element method

We have derived the variational problem (5), which is easier to solve than the
original problem. However, we still do not have a problem formulation that we can
solve numerically, because the space of all possible solutions, V , is infinite dimen-
sional. In order to make the problem solvable on a computer, we need to discretise it.
That is, we must replace the infinite-dimensional space V with a finite-dimensional
subspace Vh.

Let a = x1 < x1 < · · · < xn = b, be a partition of the interval [a, b] into n − 1
subintervals of length hj = xj+1 − xj . Let Vh be the space of functions

Vh =
{
vh ∈ V : vh is continuous on [a, b] and linear on (xj , xj), j = 1, . . . , n− 1

}
.

The space V̂h ⊂ V̂ is defined analogously.

The most convenient basis for Vh and V̂h are the so-called hat functions. The
basis functions {ϕi}ni=1 are defined by the nodal property

ϕj(xi) =

{
1 if i = j

0 if i 6= j.

1The definitions given here are intentionally vague and not strictly mathematically correct, to
keep the theory to a minimum. The derivatives in (4) are generalised derivatives, and do not need
to be defined everywhere. The V as defined here is not a linear space, in order to keep the definition
close to the practical implementation, but in a rigorous exposition of the finite element method the
problem would be recast to replace inhomogeneous Dirichlet boundaries with homogeneous ones.

FINITE ELEMENT METHOD IN 1D – PART 1 3

- x

6
ϕ

x1 x2 x3 xj xn

Figure 1. The finite element functions are continuous and piece-
wise linear.

- x

6

1
ϕ1 ϕ2 ϕj−1 ϕj ϕn

x1 x2 x3 xj−1 xj xj+1 xn

Figure 2. Finite element basis functions.

The expansion coefficients in this basis are the nodal values. That is, for vh ∈ Vh,
we have

vh =
n∑

i=1

vh(xi)ϕi.

An explicit definition of the basis functions is also given2

ϕ1(x) =

x1 − x
h1

if x1 ≤ x ≤ x2
0 otherwise

ϕi(x) =

x− xi−1
hi−1

if xi−1 ≤ x ≤ xi
xi+1 − x

hi
if xi ≤ x ≤ xi+1

0 otherwise

i = 2, 3, . . . , n− 1

ϕn(x) =

x− xn
hn

if xn ≤ x ≤ xn
0 otherwise.

2Note that the basis functions here are not differentiable in the classical sense, but they are
differentiable in the generalised sense – there is a function ϕ′ such that for any smooth ψ, ψ(a) =
ψ(b) = 0, the following integration by parts formula holds:∫ b

a

ϕψ′ dx = −
∫ b

a

ϕ′ψ dx.

FINITE ELEMENT METHOD IN 1D – PART 1 4

- x

ϕj−1 ϕj ϕj+1

xj−1 xj xj+1

- x

ϕ′j−1 ϕ′j ϕ′j+1

xj−1 xj xj+1

Figure 3. The derivative of a finite element basis function is piece-
wise constant.

The finite element method for the boundary value problem (1) can now be for-
mulated: Find uh ∈ Vh such that∫ b

a
cu′hv

′
h dx =

∫ b

a
fvh dx+ qbvh(b) ∀v ∈ V̂h. (6)

The solution uh can be written uh =
∑n

j=1 ξjϕj , where ξj = uh(xj) are the unknown

nodal values of the solution. Since the identity in (6) holds for all vh ∈ V̂h if
and only if it holds for all basis functions ϕi, we can write (6) as follows: Find
ξ =

(
ξ1, ξ2, . . . ξn

)
such that

n∑
j=1

ξj

∫ b

a
cϕ′jϕ

′
i dx︸ ︷︷ ︸

=ai,j

=

∫ b

a
fϕi dx+ qbϕi(b)︸ ︷︷ ︸

=bi

i = 1, 2, . . . , n. (7)

With A as the matrix with entries ai,j and b = (b1, b2, . . . , bn), this is a linear system
in the standard form

Aξ = b, (8)

which can be solved with standard linear algebra methods.

3. Finite element assembly

We will now look in detail at the matrix A and the vector b, and how their entries
are computed. Since the basis functions ϕi, i = 1, . . . , n, are piecewise linear, their
derivatives are piecewise constant, with

ϕ′i(x) =

1

hi−1
if xi−1 ≤ x ≤ xi

−1

hi
if xi ≤ x ≤ xi+1

0 otherwise

i = 2, 3, . . . , n− 1

and with φ′1 and φ′n being similar with the obvious modifications near the endpoints
of the interval. See also Figure 3.

Note that ai,j = aj,i and ai,j = 0 if |i− j| > 1, so we need only compute a few of
the matrix entries. For simplicity, we assume that the partitioning of the interval is

FINITE ELEMENT METHOD IN 1D – PART 1 5

uniform, that is hi = h = (n− 1)−1, i = 1, . . . , n− 1. If we use the trapezoidal rule3

to approximate the integrals over each subinterval (xi, xi+1), we get

a1,1 =
1

h2

∫ x2

x1

c dx ≈ c(x1) + c(x2)

2h

ai,i =
1

h2

∫ xi+1

xi−1

c dx ≈ c(xi−1) + 2c(xi) + c(xi+1)

2h
i = 2, . . . , n− 1

an,n =
1

h2

∫ xn

xn−1

c dx ≈ c(xn−) + c(xn)

2h

ai,i+1 = ai+1,i = − 1

h2

∫ xi+1

xi

c dx ≈ −c(xi) + c(xi+1)

2h
i = 1, . . . , n− 1.

The entries in the vector b can also be computed with the same quadrature rule.
We get

b1 =

∫ x2

x1

fϕ1 dx ≈
h

2
f(x1)

bi =

∫ xi+1

xi−1

fϕi dx ≈ hf(xi) i = 2, . . . , n− 1

bn =

∫ xn

xn−1

fϕn dx+ qb ≈
h

2
f(xn) + qb.

4. Handling Dirichlet boundary conditions

A careful comparison of the definition of the finite element spaces Vh and V̂h and
basis {ϕi}ni=1 reveals that we have one too many basis functions – only functions
with vh(a) = ua are permitted in Vh. To remedy this, we need to eliminate one
unknown from the linear system Aξ = b by fixing the value at x = a.

The way we do this is simply replacing the equation for i = 1 in (7) with ξ1 = ua.
In the linear system Aξ = b, this means replacing row 1 of the matrix of A with
the row 1 of the identity matrix In, and replacing b1 with ua.

After applying the Dirichlet boundary condition, the linear system Aξ = b has a
tridiagonal structure as follows (where it is empty there are only zeros):

1
a2,1 a2,2 a2,3

. . .
. . .

. . .

ai,i−1 ai,i ai,i+1

. . .
. . .

. . .

an−1,n−2 an−1,n−1 an−1,n
an,n−1 an,n

ξ1
ξ2
...
ξi
...
ξn
ξn

=

ua
hf2

...
hfi
...

hfn
hfn/2 + qb

3Recall that with h = x2 − x1, the trapezoidal rule reads∫ x2

x1

v(x) dx ≈ h

2
v(x1) +

h

2
v(x2).

FINITE ELEMENT METHOD IN 1D – PART 1 6

n− 1 4 8 16 32 64

error 4.1399e-03 1.0207E-03 2.5429E-04 6.3516E-05 1.5876E-05
rate n/a 2.0200 2.0050 2.0013 2.0003

Table 1. Estimated errors and covergence rates. The estimated
convergence rates approaches the exact value of two when the size of
the subintervals decreases.

5. Code verification

When have implemented a numerical scheme for the mathematical model, we
need to make sure that it works correctly. It is easy to make mistakes when deriving
the algorithm, or when implementing it in code. Approximations we make, such
as replacing an exact integral with a quadrature rule, or using inexact solvers, may
cause a loss of accuracy. Therefore, it is important that we test, in a rigorous
manner, that the scheme works as well as expected.

The method of manufactured solutions in one way to test that the code works.
We will choose an exact solution u to a boundary value problem (1) and derive
f , ua and qb from the known solution. These will be inputs used to compute an
approximate numerical solution uh. Since the exact solution u is known, we can
investigate the error u− uh.

In order to evaluate the error in a rigorous manner, we make use of error esti-
mates for the finite element method. For the method considered here, the following
estimate holds.

‖u− uh‖2 ≤ Ch2. (9)

Here, C is a constant that depends on the interval (a, b), the coefficient c, and the
exact solution u, but not on h, and ‖ · ‖2 is the norm

‖v‖2 =

√∫ b

a
v2 dx

The factor h2 in (9) means that finite element method has second order convergence
in the mesh resolution h. More generally, we assume an error bound of the form

‖u− uh‖2 ≤ Chr,

where r is order of convergence, which may be different from two if the method is not
correctly implemented. When the exact solution is known, then r can be estimated
from computed errors. For example, if we reduce the size of the subintervals from
2h to h, the order of convergence r can be estimateted:

‖u− u2h‖2
‖u− uh‖2

∼ C(2h)r

Chr
∼ 2r =⇒ r ∼ log2

(
‖u− u2h‖2
‖u− uh‖2

)
. (10)

If the estimated rates from (10) are consistent with the expected convergence rate
of two from (9), it is a strong indication that the algorithm has been correctly
implemented. To be confident about the convergence estimated rates, we need to
compute them for a range of decreasing values of h, and it is common practice to
tabulate the results as in Table 1.

FINITE ELEMENT METHOD IN 1D – PART 1 7

Exercise 1. We consider the following boundary value problem

− u′′ = (π2/4) sin(πx/2) in (0, 1) (11a)

with the boundary conditions
u(0) = 0

u′(1) = 0.
(11b)

We will solve (11) numerically with the finite element method. Throughout this
exercise, we assume that the partitioning is uniform, i.e. xi+1− xi = h = (n− 1)−1,
i = 1, . . . , n.

(a) Compute, by hand, the matrix entries ai,j (without accounting for boundary
conditions) when c(x) = 1. Compare to the matrix you would get from a finite
difference stencil.

(b) Write a Matlab function [A] = StiffnessMatrix(N, c) that computes the
stiffness matrix A (without accounting for the boundary conditions), using the
trapezoidal rule to approximate the integrals. You can assume that the domain is
the unit interval (0, 1) and that the partitioning is uniform. The function inputs
could be the number of subintervals N = n − 1 and the coefficient function c,
and the output should be a matrix in sparse format.

Test StiffnessMatrix with c(x) = 1 and check that you get the same values
that you computed in (a).

(c) Write a Matlab function [b] = LoadVector(N, f) that computes the load
vector b, without the accounting for the boundary conditions. The inputs can
be the number of subintervals N = n−1 and the source term f . Check that the
values are correct.

(d) Write a function Matlab function that applies Dirichlet and Neumann type
boundary conditions to the matrix A and vector b. For example, this could be
a funcion [A, b] = ApplyBCs(A, b, l_t, l_v, r_t, r_v) where the other
function inputs are
• l_t – type of boundary condition at x = 0 (Dirichlet or Neumann)
• l_v – boundary value at x = 0, i.e. the value u(0) for a Dirichlet boundary

condition or the flux −cu′(0) for a Neumann boundary condition
• r_t – type of boundary condition at x = 1 (Dirichlet or Neumann)
• r_v – boundary value at x = 1, i.e. the value u(1) for a Dirichlet boundary

condition or the flux cu′(1) for a Neumann boundary condition
(e) Use the functions you have implemented in (b)–(d) to compute a finite element

solution to (11). Estimate the error, and plot the numerical solution together
with the exact solution u = sin(πx/2). The code in the appendix can be used
to estimate the error.

(f) Compute the errors for N = 4, 8, 16, 32, 64. Make a table similar to Table 1. Do
you get second order convergence?

Exercise 2. We consider the following boundary value problem

−
(
(1 + x2)u′

)′
= 10x3 in (0, 1) (12a)

with the boundary conditions
u′(0) = 0

u(1) = 1.
(12b)

FINITE ELEMENT METHOD IN 1D – PART 1 8

This problem has a unique solution, which is

u(x) =
5

2

(
x− x3

3
− arctan(x)− 4

15
+
π

4

)
. (13)

Use the functions you implemented in Exercise 1 to solve this problem numerically.
Plot the numerical solution together with the exact solution, and make table of
estimated convergence rates.

Appendix A. Computing the error

The error in the numerical solution can be computed as

‖u− uh‖2 =

√∫ b

a
(u− uh)2 dx.

It is impractical to evaluate this integral exactly, so instead we use a numerical
scheme to compute an approximate value. If the accuracy of the quadrature degree
is too low, it might not provide a good estimate of the error. The code below is an
example of the how the error can be computed, using a three-point Gaussian rule
on each subinterval.

function e = Errornorm(u_e , u_h)

%ERRORNORM This function computes L2 error

% Computes an estimated distance between the

% exact solution and the numerical solution.

% The integral is approximated with three -point

% Gauss -Legendre quadrature rule

% u_e : Exact solution (function)

% u_h : Numerical solution (vector of nodal values)

n = length(u_h); % number of subintervals

h = 1.0 / (n - 1); % length of subintervals

% rule for reference interval [0, 1]

t = [(1 - sqrt (3/5)) / 2 ; 1 / 2 ; (1 + sqrt (3/5)) / 2];

w = [5/18 ; 8/18 ; 5/18];

e2 = 0;

for i = 1:(n-1)

% evaluate at quadrature points

v_e = u_e((i-1) * h + h * t);

v_h = (1-t) * u_h(i) + t * u_h(i+1);

% square difference and sum with weights

e2 = e2 + sum((v_e -v_h).^2 .* w);

end

e = sqrt(h * abs(e2));

end

	1. Boundary value problems
	2. Deriving the finite element method
	3. Finite element assembly
	4. Handling Dirichlet boundary conditions
	5. Code verification
	Appendix A. Computing the error

