
CTH/GU Mathematical Sciences MVE515 - 2017/2018

FINITE ELEMENT METHOD IN 1D – PART 2

In the previous lab we learned how to solve boundary value problems without
any time dependence. Such problems are said to be stationary or steady, and they
represent physical processes that have reached equilibrium.

In this lab we extend the methods we have learned to solve time-dependent (also
called unsteady) problems. Specifically, we will consider the heat equation and the
wave equation. Although we only consider problems in one spatial dimension here,
the methods apply just as well to problems in higher dimensions.

1. The heat equation

The first problem we consider is the heat equation, which could be used to describe
a diffusion process or the evolution of the temperature in a semi-infinite plate or a
thin rod. For this problem the unknown function u = u(x, t) depends on both the
the spatial coordinate x and the time t. We seek a solution to the following problem,

ut − (cux)x = f in (a, b)× (0, T], (1a)

where subscripts ut and ux denotes partial derivatives with respect to t and x. As
before, c and f are given functions (depending on both x and t), and we have a set
of boundary conditions at the endpoints of the interval,

u(a, t) = ua(t)

c(b, t)ux(b, t) = qb(t)

}
for t ∈ (0, T]. (1b)

Here the boundary conditions may also depend on the time t. For the heat equation
we also need an initial condition,

u(x, 0) = g(x) for x ∈ (a, b) (1c)

Again, the first step in solving this problem is to derive a variational formulation.
We multiply the equation in (1a) with a smooth test function v with v(a) = 0
(because there is a Dirichlet boundary condition at the left boundary) and integrate
over the spatial domain (a, b), and we get∫ b

a

(
ut − (cux)x

)
v dx =

∫ b

a
fv dx.

Now we do integration by parts on the second term on left hand side. This is
exactly the same as in the previous time-independent case, and we get the variational
problem: Find u such that∫ b

a
ut(x, t)v(x) + cux(x, t)vx(x) dx =

∫ b

a
f(x, t)v(x) dx+ qb(t)v(b)

∀v, with v(a) = 0.

(2)

Here we have integrated away the dependence on the spatial coordinate x, but not
on the time t, so (2) must hold hold for each 0 < t ≤ T .

1

FINITE ELEMENT METHOD IN 1D – PART 2 2

2. A finite element method for the heat equation

The variational formulation (2) is the starting point for deriving a finite element
formulation. In the previous lab, we discretised the variational form by partitioning
the interval and introducing a subordinate basis of “hat functions” to represent
the solution. In effect, the continuous coordinate x was replaced with a discrete
set x1, x2, . . . , xn. For the current time-dependent problem, we will also have to
similarly discretise the time coordinate t.

2.1. Discretising in space. As for the stationary problem in the previous lab, we
introduce a partitioning of the the interval (a, b), with a = x1 < x2 < . . . < xn =
b, and we define a finite-dimensional space Vh, consisting of the continuous and
piecewise linear functions:

Vh =
{
v ∈ C([a, b]) : v|[xi,xi+1] ∈ P1, i = 1, . . . , n− 1

}
.

with the same basis {ϕj}nj=1 as before,

ϕj(xi) =

{
1 if i = j

0 if i 6= j.

Note that the functions in Vh vary in space, but not in time. We introduce the time
dependence in the expansion coefficients with respect to the basis.

uh(x, t) =
n∑
j=1

ξj(t)ϕj(x).

Now, in (2), we replace u with uh and v with a basis function ϕi. We then have
n∑
j=1

∫ b

a
ξ̇j(t)ϕj(x)ϕi(x) dx+

n∑
j=1

∫ b

a
c(t, x)ξj(t)ϕ

′
j(x)ϕ′

i(x) dx

=

∫ b

a
f(x, t)ϕi(x) dx+ qb(t)ϕi(b) i = 1, 2, . . . , n.

This is a system of first order ordinary differential equations for ξ = (ξ1(t), . . . , ξn(t)).
We rewrite it in a simpler form

Mξ̇(t) +A(t)ξ(t) = b(t) (3)

where M is the mass matrix, and A and b are the stiffness matrix and loadvector
as before, but now being time-dependent. The entries in M , A and b are

mi,j =

∫ b

a
ϕj(x)ϕi(x) dx

ai,j =

∫ b

a
c(t, x)ξj(t)ϕ

′
j(x)ϕ′

i(x) dx

bi =

∫ b

a
f(x, t)ϕi(x) dx+ qb(t)ϕi(b).

Note that here we have not taken into account the effects of Dirichlet boundary
conditions on the matrix A and the vector b. The stiffness matrix A and the load
vector b are computed as for the stationary problem, but are now time-dependent.

FINITE ELEMENT METHOD IN 1D – PART 2 3

2.2. Using a diagonal mass matrix. We will replace the exact mass matrix with
an approximation, again making use of the trapezoidal rule to compute the integral.
Recall that the basis functions have the property

φi(xj) =

{
1 if i = j

0 if i 6= j.

The nonzero entries in the approximate mass matrixM are then the diagonal entries

mi,i =

{
h/2 if i = 1 or i = n

h if 1 < i < n.

2.3. Discretising in time. The semi-discrete system (3) have to be discretised in
time. Suppose that 0 = t1 < t2 < · · · < tm = T is a partitioning of the time domain,
and let ξl = ξ(tl), l = 1, . . . ,m. We replace the time derivative ξ̇ in (3) with an
approximation

ξl+1 − ξk

tl+1 − tl
≈ ξ̇(θtl+1 + (1− θ)tl), θ ∈ [0, 1].

Usually, the parameter θ is 1 (backward differene), 0 (forward difference) or 1/2
(central difference). Inserting this approximation into (3), using the notation tl+θ =
θtl+1 + (1− θ)tl we get,

M

(
ξl+1 − ξl
tl+1 − tl

)
≈ b(tl+θ)−A(tl+θ)ξ(tl+θ)

≈ b(tl+θ)− θA(tl+θ)ξ(tl+1)− (1− θ)A(tl+θ)ξ(tl).

For simplicty, we assume that the time steps are uniform, i.e. tl+1 − tl = k, l =
1, . . . ,m − 1, in which case tl+θ = tl + θk. After rearranging the terms, we get an
equation we can solve for ξl+1:(
M + θkA(tl+θ)

)
ξl+1 =

(
M − (1− θ)kA(tl+θ)

)
ξl + kb(tl+θ), l = 1, . . . ,m− 1.

(4)
That is, for each l = 1, . . . ,m− 1, we solve a linear system

Ãξl+1 = b̃,

where

Ã = M + θkA(tl+θ)

b̃ =
(
M − (1− θ)kA(tl+θ)

)
ξl + kb(tl+θ)

We can solve (4) sequentially for each ξl+1, starting from ξ1 determined by the
initial condition u(x, 0) = g(x).

Equation (4) is a time-stepping scheme for solving time-dependent problems that
generalises some of the commonly used schemes. Taking θ = 0 results in a forward
(or explicit) Euler scheme, θ = 1 corresponds to backwards (or implicit) Euler, and
θ = 1/2 corresponds to Crank-Nicolson.

FINITE ELEMENT METHOD IN 1D – PART 2 4

2.4. Handling Dirichlet boundary conditions. In (4) the Neumann boundary
conditions are accounted for in the vector b(tk+θ), but we still need to impose the
Dirichlet Boundary condition.

Recall that the full system that we have to solve for in each time step reads

Ãξl+1 = b̃,

where

Ã = M + θkA(tl+θ)

b̃ =
(
M − (1− θ)kA(tl+θ)

)
ξl + kb(tl+θ)

We impose the Dirichlet boundary condition the same as we did for the stationary
problem in the previous lab. That is, we set the first row in Ã to identity, and fix
the value in the first entry of b̃.

Note that this means that the Dirichlet and Neumann boundary conditions are
handled at different times. The Neumann boundary condition contributes to the
load vector b(tl + θk), but the Dirichlet boundary condition is imposed on the full
system at time tl+1.

2.5. Error analysis for the time-stepping scheme. The error at the final time
T can be estimated according to1

‖u(T)− uh(T)‖2 ≤ C1h
2 + C2k

r, (5)

where r = 1 for forward and backward Euler, and r = 2 for Crank-Nicolson. The
two terms on the right (5) comes from spatial and temporal discretisation errors,
respectively.

When we want to test our implementation of a time-stepping scheme with the
method of manufactured solutions, it is often convenient to choose a problem where
there is no spatial discretion error. This happens when the exact solution can be
exactly represented in the finite element basis. For example, if the exact solution is a
line, then we make no error when approximating it with a piecewise linear function.

2.6. Using Matlab’s solvers. In this section we look at some other time-stepping
methods. There is a number of solvers Matlab that can be applied to systems of
ODEs of the form

Mξ̇ = F (t, ξ).

We need to rewrite (3) in this form, and find

Mξ̇ = b(t)−A(t)ξ = F (t, ξ).

The available solvers are ode15s, ode23, ode23s, and ode45. For this problem,
the implicit solvers ode15s and ode23s are the most appropriate. These usage of
these solvers are

>> [T, U] = ode15s(F, [0,t_final], y0 , odeopts)

where the variables involved are

1This estimate holds in general for θ ∈ [1/2, 1], but for θ ∈ [0, 1/2] it is only valid when k � h.
This relates to the instability explicit methods for small values of the Courant number ck/h2. See
e.g. https://en.wikipedia.org/wiki/Courant_number.

https://en.wikipedia.org/wiki/Courant_number

FINITE ELEMENT METHOD IN 1D – PART 2 5

• F is a function F(t, y) corresponding to F . It must return a column vector,
• t_final is the final time,
• y0 is a column vector containing the initial values,
• odeopts is an object containing solver options,
• T is a vector containing a partitioning of the time intervals,
• U is a matrix containing the solutions for the times in T. The solution at the

final time can be accessed with U(end, :).

The mass matrix M have to be passed to solver through the odeopts object. This
can be done with the command odeopts = odeset("Mass", M). Other options like
solver tolerances can also be set the same way, see help odeset for details.

3. The wave equation

The next problem we will look at is the wave equation. This is similar to heat
equation, except for a second derivative in time:

utt − (cux)x = f in (a, b)× (0, T], (6a)

where subscripts ut and ux denotes partial derivatives with respect to t and x. As
before, c and f are given functions (depending on both x and t), and we have a set
of boundary conditions at the endpoints of the interval,

u(a, t) = ua(t)

c(b, t)ux(b, t) = qb(t)

}
for t ∈ (0, T]. (6b)

For the wave equation we also need two initial conditions:

u(x, 0) = g(x)

ut(x, 0) = h(x)

}
for x ∈ (a, b). (6c)

3.1. Solving the wave equation. We can derive the variational form of the wave
equation in exactly the same way as we did for the heat equation, and we can also
discretise it the same way. In the end we get a system of ODEs that reads

Mξ̈(t) +A(t)ξ(t) = b(t), (7)

where the only difference between (3) and (7) is the order of the time derivative.
One way to attack the system (7) is to reformulate is a first order system by

introducing an auxiliary variable χ = ξ̇. The resulting first order system can be
written

ξ̇(t) = χ(t)

Mχ̇(t) = b(t)−A(t)ξ(t).

In matrix notation, we have[
I 0
0 M

] [
ξ̇
χ̇

]
=

[
0 I
−A 0

] [
ξ
χ

]
+

[
0
b

]
(8)

and this is problem that can we solve with Matlab’s ode solvers, for example ode45.

Exercise 1. We consider the following problem.

ut − uxx = 3x exp(−3t) in (0, 1)× (0, 1], (9a)

FINITE ELEMENT METHOD IN 1D – PART 2 6

with the boundary conditions

u(0, t) = 0

ux(1, t) = 1− exp(−3t)

}
for t ∈ (0, 1]. (9b)

And the initial condition

u(x, 0) = 0 for x ∈ (0, 1). (9c)

(a) Write a function M = MassMatrix(N) that computes the mass matrix for a uni-
form partitioning of (0, 1) into N subintervals using the approximate mass ma-
trix from Section 2.2. Make sure to use the function spdiags to construct the
matrix.

Also modify the function StiffnessMatrix that you implemented in the pre-
vious lab so that it uses spdiags to construct the sparse matrix.

(b) Copy HeatEquation.m into your working directory, where you have the functions
StiffnessMatrix, LoadVector and MassMatrix. Check that the class works by
typing in the following:

>> Problem = HeatEquation (4, @(x, t) 1, @(x, t) 1);

>> Problem.SolveTheta (1, 4, 1);

It might be necessary to make adjustments to StiffnessMatrix and LoadVector

to make sure that the matrices are generated with compatible sizes. That is,
the function call LoadVector(N, f) should generate a column vector of length
N + 1.

To implement problem (9) which we solve in this exercise, we can type in the
following:

>> c = @(x, t) 1;

>> f = @(x, t) 3 * x * exp(-3*t);

>> N = 4;

>> Problem = HeatEquation(N, c, f);

>> Problem.BC_Types (1) = ’D’;

>> Problem.BC_Values {2} = @(t) (1-exp(-3*t));

Here the last two lines changes the left boundary condition to type Dirichlet,
and sets the value for the right boundary condition (by default, the boundary
conditions are homogeneous Neumann).

(c) The class HeatEquation has a member function HeatEquation.SolveTheta for
solving the heat equation with the time-stepping scheme described in section
2.3. However, this function is incomplete. The input parameter θ is unused,
and the function works as if θ = 1. Complete the function so that it implements
the time stepping scheme described by equation (4).

After you fix the the function SolveTheta, try plotting some of the solutions
with θ = 1/2. Make a figure with space on one axis and time on the other, for
example with mesh or surf. For example, we can type in the following code to
solve the problem:

>> T_final = 1.0;

>> num_timesteps = 10;

>> [U, T] = Problem.SolveTheta(T_final , num_timesteps , 0.5);

FINITE ELEMENT METHOD IN 1D – PART 2 7

Here T will hold the time partioning and U will have the solution. We can now
plot the solution as follows:

>> X = linspace(0, 1, Problem.N + 1);

>> mesh(X, T, U);

Hint : The comments in the function explains every step. The lines that you
have to modify are marked with %FIXME in the comments.

(d) Determine experimentally the convergence rate r in (5), for θ = 0, 1/2 and 1.
Do the values you get agree with the theoretical values (1,2 and 1, respectively)?
You can make use of the function HeatEquation.PrintConvergenceTableTheta

to print the tables. This function computes errors at the final time, and may be
used as follows:

>> theta = 0.5;

>> u_e = @(x) x * (1 - exp(-3 * T_final));

>> Problem.PrintConvergenceTableTheta(u_e , [2,6], theta);

where u_e is the exact solution at the final time.
The exact solution to (9) is

u(x, t) = x(1− exp(−3t)),

and since the solution is linear in x, only the time discretisation contribute to
the error in (5). Since the error does not depend on the spatial discretisation,
you can use a small value of N when computing errors and rates, for example
N = 4.

Exercise 2. We consider the following heat equation.

ut −
(
(1 + x2t2)ux

)
x

= x/(1 + x2t2) in (0, 1)× (0, 1], (10a)

with the boundary conditions

c(0, t)ux(0, t) = t

c(1, t)ux(1, t) = t

}
for t ∈ (0, 1]. (10b)

And the initial condition

u(x, 0) = 0 for x ∈ (0, 1). (10c)

We want to solve this problem with the built-in ODE solvers in Matlab, as de-
scribed in section 2.6. These solvers require that the problem is written in the form
Mu̇ = F (t,u), where F must be provided as a Matlab function.

(a) Extend the class HeatEquation with a function y = F(t, u) that we can used
in conjunction with ode15s, as described in Section 2.6. You may assume that
the boundary conditions are of Neumann type. As a starting point, consider the
following code.

function y = F(obj , t, u)

% F defines the right hand side of ode system equation

A = obj.stiffnessmatrix(t);

b = obj.loadvector(t);

y = ...

end

FINITE ELEMENT METHOD IN 1D – PART 2 8

Write the function in the methods part of the class definition in heatequation.m.
(b) Write a functions that solves the heat equation, using the built-in solver ode15s.

Recall that ode15s is used as follows

>> [T, U] = ode15s(F, [0, t_final], u0 , odeopts)

where F is a function defining the right hand side of the equation, the second
argument is the time interval to solve for, and u0 is the (known) solution at time
t = 0. The last argument, odeopts is an object with various solver options. For
example, we want to make use of the mass matrix and a sparse Jacobian. We
can this by creating the object odeopts as follows:

>> JPattern = spdiags(ones(n, 3), [-1,0,1], n,n)

>> odeopts = odeset ("Mass", M, "JPattern", JPattern)

To use the built in solver to solve (10), we need to pass in the function F
from (a). Also, we need to interpolate the initial values g (which is zero for this
specific problem). For example, this could be done in a function as follows:

function [T, U] = SolveODE15s(obj , t_final)

% Assemble the mass matrix

M = obj.MassMatrix ();

% Interpolate initial values

x = linspace(0, 1, obj.N+1);

u0 = zeros(obj.N + 1, 1);

for i=1:(obj.N+1)

u0(i) = obj.g(x(i));

end

% Solve

F = @obj.F;

odeopts = ...

[T, U] = ...

end

After you have implemented this function, test it on problem (10), and plot the
result, for example using mesh or surf as in exercise 1.

Remember that the problem have to set up with correct boundary conditions
first. For example,

c = @(x, t) 1 + x^2 * t^2;

f = @(x, t) x / (1 + x^2 * t^2);

Problem = HeatEquation (50, c, f);

Problem.Boundary_Values = {@(t) t, @(t) t}

(c) The exact solution to (10) is

u(x, t) = arctan(xt).

After we have solved the problem with the function implemented in (b), the
error at the final time can be estimated as follows:

FINITE ELEMENT METHOD IN 1D – PART 2 9

>> [T, U] = Problem.SolveODE15s (1.0);

>> u_h = U(end , :)’; % Extract values at the final time

>> u_e = @(x) atan(x);

>> error = Errornorm(u_e , u_h)

Solve the problem with N = 50 using ode15s and note the error and the number
of timesteps needed.

(d) Try solving the problem with Crank-Nicolson (θ = 1/2) and backwards Euler
(θ = 1) to the same accuracy. You will have to try different number of timesteps
(and using the same value for N) and find one that gives approximately the
same error as you got with ode15s in (c). How many timesteps are needed?

Exercise 3. We consider the wave equation,

utt − uxx = 0 in (0, 1)× (0, 1], (11a)

with boundary conditions

ux(0, t) = π cos(πt)

ux(1, t) = π cos(π − πt)

}
for t ∈ (0, 1]. (11b)

and initial conditions

u(x, 0) = sin(πx)

ut(x, 0) = −π cos(πx)

}
for x ∈ (0, 1). (11c)

The exact solution is
u(x, t) = sin(πx− πt).

Make new class WaveEquation, as a copy of HeatEquation. Make sure file name,
class name and constructor names are matching. To solve the wave equation (11),
we need to make the following modifications:

(1) Add a property to hold the second initial condition.
(2) Modify the the function WaveEquation.F for the ODE system (2). Recall

that the ODE system reads[
I 0
0 M

] [
ξ̇
χ̇

]
=

[
0 I
−A 0

] [
ξ
χ

]
+

[
0
b

]
=

[
χ

b−Aξ

]
This means that the vector of unknowns is twice as long as for it was for the
heat equation, containing the nodal values of both uh and u̇h. It is useful to
split the vector and work with the individual components. For example,

function y = F(obj , t, u)

u1 = u(1:n); u2 = u(n+1: end);

...

y1 = u2; y2 = b - A * u1;

y = [y1; y2];

(3) Add a function WaveEquation.SolveODE45 similar to the solve function for
the heat equation. The difference is that there are now two initial conditions
to interpolate, and that the “mass matrix” for the system is different. Also,
use the built-in solver ode45 instead of ode15s.

Solve (11), plot the solution and compute the error.

FINITE ELEMENT METHOD IN 1D – PART 2 10

Appendix A. Classes in matlab

It is often convenient to structure our code to make use of classes. In Matlab,
classes has a set of properties (variables) and a set of methods (functions). We can
define a class to store the parameters we need to define the heat equation as follows.

classdef HeatEquation

%HEATEQUATION This class managed the data structures

% used to solve the heat equation.

properties

% We always need to following parameters

N % mesh size (number of intervals)

c % diffusion coefficient (function)

f % source term (function)

% Default to homogeneous Neumann boundaries

BC_Types = ["N", "N"];

BC_Values = {@(t) 0, @(t) 0};

% Default to zero initial condition

g = @(x) 0*x;

end

methods

% Constructor

function obj = HeatEquation(N, c, f)

obj.N = N;

obj.c = c;

obj.f = f;

end

end

end

Just like functions, classes have to placed in a file with the same name as the class,
in this case HeatEquation.m. We can then instantiate the class and change the
parameters, for example

>> Problem = HeatEquation (8, @(x,t) 1, @(x,t) 3*x*exp(-3*t));

>> Problem.BC_Types (1) = "D";

>> Problem.BC_Vaues (2) = @(t) 1 - exp(-3*t);

The class can be extended with additional methods. For example, we can add a
method for assembling the time-dependent stiffness matrix by including the following
code under methods in the class definition:

function [A] = StiffnessMatrix(obj , t)

%STIFNESSSSMATRIX Assemble stiffness matrix at time t

A = StiffnessMatrix(obj.N, @(x) obj.c(x,t));

end

FINITE ELEMENT METHOD IN 1D – PART 2 11

Here we have defined a method HeatEquation.StiffnessMatrix that calls the
function StiffnessMatrix that we implemented in the last lab. We can call this
method to compute the stiffnessmatrix at time t = 0.1 by typing in

>> A = Problem = Problem.StiffnessMatrix (0.1);

This demonstrates some of the advantages of using classes. We do not have to pass
around the all the variables, since the class already knows the variables N and c.
Also, we do not have to create a new file for the new function, and avoid name
conflicts. Classes can have local functions, meaning that we could copy the function
StiffnessMatrix into HeatEquation.m, after the end of the class definition. This
means that using classes is a way to get around Matlab’s limitation of one function
per file.

A method to assemble the load vector b, that takes as input a time-dependent
source f(x, t) can be implemented in a similar way.

function [b] = LoadVector(obj , t)

%LOADVECTOR Assemble the load vector at time t

b = LoadVector(obj.N, @(x) obj.f(x, t));

% Account for boundary conditions

if obj.BC_Types (1) == "N"

b(1) = b(1) - obj.BC_Values {1}(t);

end

if obj.BC_Types (2) == "N"

b(end) = b(end) + obj.BC_Values {2}(t);

end

end

	1. The heat equation
	2. A finite element method for the heat equation
	2.1. Discretising in space.
	2.2. Using a diagonal mass matrix
	2.3. Discretising in time.
	2.4. Handling Dirichlet boundary conditions
	2.5. Error analysis for the time-stepping scheme
	2.6. Using Matlab's solvers

	3. The wave equation
	3.1. Solving the wave equation

	Appendix A. Classes in matlab

