Here is an improved version of Theorem 6.4.
Theorem 1. The eigenfunctions $\left\{\varphi_{j}\right\}_{j=1}^{\infty}$ of (6.5) form an orthonormal basis for L_{2}. The series $\sum_{j=1}^{\infty} \lambda_{j}\left(v, \varphi_{j}\right)^{2}$ is convergent if and only if $v \in H_{0}^{1}$. Moreover,

$$
\begin{equation*}
\|\nabla v\|^{2}=a(v, v)=\sum_{j=1}^{\infty} \lambda_{j}\left(v, \varphi_{j}\right)^{2}, \quad \text { for all } v \in H_{0}^{1} \tag{1}
\end{equation*}
$$

Proof. By our above discussion it follows that for the first statement it suffices to show (6.13) for all v in H_{0}^{1}, which is a dense subspace of L_{2}. We shall demonstrate that

$$
\begin{equation*}
\left\|v-\sum_{j=1}^{N}\left(v, \varphi_{j}\right) \varphi_{j}\right\| \leq C \lambda_{N+1}^{-1 / 2}, \quad \text { for all } v \in H_{0}^{1} \tag{2}
\end{equation*}
$$

which then implies (6.13) in view of Theorem 6.3.
To prove (2), set $v_{N}=\sum_{j=1}^{N}\left(v, \varphi_{j}\right) \varphi_{j}$ and $r_{N}=v-v_{N}$. Then $\left(r_{N}, \varphi_{j}\right)=0$ for $j=1, \ldots, N$, so that

$$
\frac{\left\|\nabla r_{N}\right\|^{2}}{\left\|r_{N}\right\|^{2}} \geq \inf \left\{\|\nabla v\|^{2}: v \in H_{0}^{1},\|v\|=1,\left(v, \varphi_{j}\right)=0, j=1, \ldots, N\right\}=\lambda_{N+1}
$$

and hence

$$
\left\|r_{N}\right\| \leq \lambda_{N+1}^{-1 / 2}\left\|\nabla r_{N}\right\|
$$

It now suffices to show that the sequence $\left\|\nabla r_{N}\right\|$ is bounded. We first recall from Theorem 6.1 that $a\left(\varphi_{i}, \varphi_{j}\right)=0$ for $i \neq j$, so that $a\left(r_{N}, v_{N}\right)=0$. Hence $a(v, v)=$ $a\left(v_{N}, v_{N}\right)+2 a\left(v_{N}, r_{N}\right)+a\left(r_{N}, r_{N}\right)=a\left(v_{N}, v_{N}\right)+a\left(r_{N}, r_{N}\right)$ and

$$
\left\|\nabla r_{N}\right\|^{2}=a\left(r_{N}, r_{N}\right)=a(v, v)-a\left(v_{N}, v_{N}\right) \leq a(v, v)=\|\nabla v\|^{2}
$$

which completes the proof of (2).
For the proof of the second statement, we first note that, for $v \in H_{0}^{1}$,

$$
\sum_{j=1}^{N} \lambda_{j}\left(v, \varphi_{j}\right)^{2}=a\left(v_{N}, v_{N}\right)=a(v, v)-a\left(r_{N}, r_{N}\right) \leq a(v, v)
$$

and we conclude that $\sum_{j=1}^{\infty} \lambda_{j}\left(v, \varphi_{j}\right)^{2}<\infty$. Conversely, we assume that $v \in L_{2}$ and $\sum_{j=1}^{\infty} \lambda_{j}\left(v, \varphi_{j}\right)^{2}<\infty$. We already know that $v_{N} \rightarrow v$ in L_{2} as $N \rightarrow \infty$. To obtain convergence in H^{1} we note that, with $M>N$,

$$
\alpha\left\|v_{N}-v_{M}\right\|_{1}^{2} \leq\left\|\nabla\left(v_{N}-v_{M}\right)\right\|^{2}=\sum_{j=N+1}^{M} \lambda_{j}\left(v, \varphi_{j}\right)^{2} \rightarrow 0 \text { as } N \rightarrow \infty
$$

Hence, v_{N} is a Cauchy sequence in H^{1} and converges to a limit in H^{1}. Clearly, this limit is the same as v. By the trace theorem (Theorem A.4) v_{N} is also a Cauchy sequence in $L_{2}(\Gamma)$, and since $v_{N}=0$ on Γ we conclude that $v=0$ on Γ. Hence, $v \in$ H_{0}^{1}. Finally, (1) is obtained by letting $N \rightarrow \infty$ in $a\left(v_{N}, v_{N}\right)=\sum_{j=1}^{N} \lambda_{j}\left(v, \varphi_{j}\right)^{2}$.

Here is an improved version of Theorem 13.1.
Theorem 2. Let u_{h} and u be the solutions of (13.2) and (13.1). Then we have, for $t \geq 0$,

$$
\begin{aligned}
\left\|u_{h, t}(t)-u_{t}(t)\right\| \leq & C\left(\left|v_{h}-R_{h} v\right|_{1}+\left\|w_{h}-R_{h} w\right\|\right) \\
& +C h^{2}\left(\left\|u_{t}(t)\right\|_{2}+\int_{0}^{t}\left\|u_{t t}\right\|_{2} d s\right) \\
\left\|u_{h}(t)-u(t)\right\| \leq & C\left(\left|v_{h}-R_{h} v\right|_{1}+\left\|w_{h}-R_{h} w\right\|\right) \\
& +C h^{2}\left(\|u(t)\|_{2}+\int_{0}^{t}\left\|u_{t t}\right\|_{2} d s\right) \\
\left|u_{h}(t)-u(t)\right|_{1} \leq & C\left(\left|v_{h}-R_{h} v\right|_{1}+\left\|w_{h}-R_{h} w\right\|\right) \\
& +C h\left(\|u(t)\|_{2}+\int_{0}^{t}\left\|u_{t t}\right\|_{1} d s\right)
\end{aligned}
$$

Proof. Writing as usual

$$
u_{h}-u=\left(u_{h}-R_{h} u\right)+\left(R_{h} u-u\right)=\theta+\rho,
$$

we may bound ρ and ρ_{t} as in the proof of Theorem 10.1 by

$$
\begin{equation*}
\|\rho(t)\|+h|\rho(t)|_{1} \leq C h^{2}\|u(t)\|_{2}, \quad\left\|\rho_{t}(t)\right\| \leq C h^{2}\left\|u_{t}(t)\right\|_{2} \tag{3}
\end{equation*}
$$

For $\theta(t)$ we have, after a calculation analogous to that in (10.14),

$$
\begin{equation*}
\left(\theta_{t t}, \chi\right)+a(\theta, \chi)=-\left(\rho_{t t}, \chi\right), \quad \forall \chi \in S_{h}, \quad \text { for } t>0 \tag{4}
\end{equation*}
$$

Imitating the proof of Lemma 13.1, we choose $\chi=\theta_{t}$:

$$
\frac{1}{2} \frac{d}{d t}\left(\left\|\theta_{t}\right\|^{2}+|\theta|_{1}^{2}\right) \leq\left\|\rho_{t t}\right\|\left\|\theta_{t}\right\| .
$$

After integration in t we obtain

$$
\begin{aligned}
\left\|\theta_{t}(t)\right\|^{2}+|\theta(t)|_{1}^{2} & \leq\left\|\theta_{t}(0)\right\|^{2}+|\theta(0)|_{1}^{2}+2 \int_{0}^{t}\left\|\rho_{t t}\right\|\left\|\theta_{t}\right\| \mathrm{d} s \\
& \leq\left\|\theta_{t}(0)\right\|^{2}+|\theta(0)|_{1}^{2}+2 \int_{0}^{t}\left\|\rho_{t t}\right\| \mathrm{d} s \max _{s \in[0, t]}\left\|\theta_{t}\right\| \\
& \leq\left\|\theta_{t}(0)\right\|^{2}+|\theta(0)|_{1}^{2}+2\left(\int_{0}^{T}\left\|\rho_{t t}\right\| \mathrm{d} s\right)^{2}+\frac{1}{2}\left(\max _{s \in[0, T]}\left\|\theta_{t}\right\|\right)^{2}
\end{aligned}
$$

for $t \in[0, T]$. This implies

$$
\frac{1}{2}\left(\max _{s \in[0, T]}\left\|\theta_{t}\right\|\right)^{2} \leq\left\|\theta_{t}(0)\right\|^{2}+|\theta(0)|_{1}^{2}+2\left(\int_{0}^{T}\left\|\rho_{t t}\right\| \mathrm{d} s\right)^{2}
$$

and hence

$$
\left\|\theta_{t}(t)\right\|^{2}+|\theta(t)|_{1}^{2} \leq 2\left\|\theta_{t}(0)\right\|^{2}+2|\theta(0)|_{1}^{2}+4\left(\int_{0}^{T}\left\|\rho_{t t}\right\| \mathrm{d} s\right)^{2},
$$

for $t \in[0, T]$. In particular this holds with $t=T$ where T is arbitrary. Using also bounds for $\rho_{t t}$ similar to (3), we obtain

$$
\begin{aligned}
\left\|\theta_{t}(t)\right\|+\|\theta(t)\| & \leq C\left(\left\|\theta_{t}(t)\right\|+|\theta(t)|_{1}\right) \\
& \leq C\left(\left\|w_{h}-R_{h} w\right\|+\left|v_{h}-R_{h} v\right|_{1}\right)+C h^{2} \int_{0}^{t}\left\|u_{t t}\right\|_{2} \mathrm{~d} s
\end{aligned}
$$

and

$$
|\theta(t)|_{1} \leq C\left(\left\|w_{h}-R_{h} w\right\|+\left|v_{h}-R_{h} v\right|_{1}\right)+C h \int_{0}^{t}\left\|u_{t t}\right\|_{1} \mathrm{~d} s
$$

Together with the bounds in (3) this completes the proof.
We remark that the choices $v_{h}=R_{h} v$ and $w_{h}=R_{h} w$ in Theorem 2 give optimal order error estimates for all the three quantities considered, but that other optimal choices of v_{h} could cause a loss of one power of h, because of the gradient in the first term on the right. This can be avoided by a more refined argument. The regularity requirement on the exact solution can also be reduced.
/stig

