Here is an improved version of Theorem 6.4.

Theorem 1. The eigenfunctions {p;}52, of (6.5) form an orthonormal basis for
Lo. The series Z;’il Aj (v, cpj)2 is convergent if and only if v € Hi. Moreover,

[ Vo||? = Z)\J v, ;)% for allv € H}. (1)
j=1

Proof. By our above discussion it follows that for the first statement it suffices to
show (6.13) for all v in H}, which is a dense subspace of Ly. We shall demonstrate
that

N
vaZ(v ©; %H <C’)\N+1, for all v € Hy, (2)

which then implies (6.13) in view of Theorem 6.3.

To prove (2), set vy = Zjvzl(v,goj)cpj and ry = v —vy. Then (ry,p;) = 0 for
j=1,...,N, so that

[Vry|?

||TN||2 Z lnf{HerH2 BAONS H(%a HU” = 17 (’Ua@j) = Oa.] = la .. aN} - )\N+la

and hence 1o
Il < ARVl

It now suffices to show that the sequence | Vry|| is bounded. We first recall from
Theorem 6.1 that a(y;, ¢;) = 0 for i # j, so that a(ry,vn) = 0. Hence a(v,v) =
a(vy,vN) + 2a(vn,rN) + a(ry, ) = alvy,vn) + a(ry, ry) and

IVrnl? = a(ry,rv) = a(v,v) = a(vy, vw) < a(v,v) = |[Vo|]?,

which completes the proof of (2).
For the proof of the second statement, we first note that, for v € H},

N

Z)‘j(va <pj)2 = a(UN’UN) = a(v, U) - CL(TN,’I"N) < (1(1}, U)a

and we conclude that Z;’il Aj(v,0;)? < co. Conversely, we assume that v € Lo
and Z;’il Aj(v,0;)? < co. We already know that vy — v in Ly as N — oo. To
obtain convergence in H' we note that, with M > N,

M
allvy —vmllF < [IV(uy —om)|]? = Z A (v,95)* = 0as N — .
j=N+1

Hence, vy is a Cauchy sequence in H' and converges to a limit in H!. Clearly, this
limit is the same as v. By the trace theorem (Theorem A.4) vy is also a Cauchy
sequence in Lo(I"), and since vy = 0 on I we conclude that v =0 on I'. Hence, v €
H}. Finally, (1) is obtained by letting N — oo in a(vy,vy) = Zjvzl (v, )% O



Here is an improved version of Theorem 13.1.

Theorem 2. Let up and u be the solutions of (15.2) and (13.1). Then we have,
fort >0,
luno(®) = w(8)| < C(Jon = Ruvl + wn — Rueo]))
t
+ O (Jue®)ll+ [ [l ds).
0
Jun() = w@®)ll < C(lon = Buvly + lwn — Rywl))
t
+ O (a0 + 2 ds).
0
[un(t) = u®)ly < C(Jow = Ruvly + wn — Rl

t
+ Ot + [ s ds).

Proof. Writing as usual
up —u = (up, — Rpu) + (Rpu —u) = 0 + p,

we may bound p and p; as in the proof of Theorem 10.1 by

lp@1l + hlp®)]r < CR|lu)ll2,  llpe)]] < Ch?|lus(t)]]2. 3)
For 0(t) we have, after a calculation analogous to that in (10.14),
(Oue, x) + a0, x) = —(pet, x), VX € Sp, fort > 0. (4)
Imitating the proof of Lemma 13.1, we choose y = 6;:
d
1

5%(H9t”2 + |9|%) < Alpeell [10¢]]-

After integration in ¢ we obtain
t
16 (&)1 +6)[F < [16:(0)]1* + [6(0) % + 2/0 [loee |l 110l ds
t
< 1:0)17 +160)F +2 [ [l ds max [
0 s€0,t]

<9029022T d21 92
< 10:(0)[|* + |0(0)[1 + (/0 llpee |l 8) +5(Sgg>;]ll tll),

for ¢ € [0,T]. This implies

1 2 2 2 ’ 2
ES <
2 (333}%] ||9t||) < [6:(0)[I* + [6(0)[1 + 2(/0 [ el ds)

and hence
T 2
10401 + 1061 < 21000)1F + 20600 +4( [ loal ds)

for t € [0,T]. In particular this holds with ¢ = T where T is arbitrary. Using also
bounds for p;; similar to (3), we obtain

10:8) 11+ oIl < C(8.e)] + 16(t)1 )

t
< C(lon — Ryl + o~ Ruoh) + €12 [ funl s
0



and
t
|0(t)]1 < C(||wh — Rywl| + |vp, — th|1> + Ch/ lwee])1 ds.
0

Together with the bounds in (3) this completes the proof. O

We remark that the choices vy, = Rpv and wy, = Rpw in Theorem 2 give optimal
order error estimates for all the three quantities considered, but that other optimal
choices of v, could cause a loss of one power of h, because of the gradient in the first
term on the right. This can be avoided by a more refined argument. The regularity
requirement on the exact solution can also be reduced.
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