
Here is an improved version of Theorem 6.4.

Theorem 1. The eigenfunctions {ϕj}∞j=1 of (6.5) form an orthonormal basis for
L2. The series

∑∞
j=1 λj(v, ϕj)2 is convergent if and only if v ∈ H1

0 . Moreover,

‖∇v‖2 = a(v, v) =
∞∑

j=1

λj(v, ϕj)2, for all v ∈ H1
0 . (1)

Proof. By our above discussion it follows that for the first statement it suffices to
show (6.13) for all v in H1

0 , which is a dense subspace of L2. We shall demonstrate
that ∥∥∥v −

N∑
j=1

(v, ϕj)ϕj

∥∥∥ ≤ Cλ
−1/2
N+1 , for all v ∈ H1

0 , (2)

which then implies (6.13) in view of Theorem 6.3.

To prove (2), set vN =
∑N

j=1(v, ϕj)ϕj and rN = v − vN . Then (rN , ϕj) = 0 for
j = 1, . . . , N , so that

‖∇rN‖2

‖rN‖2
≥ inf

{
‖∇v‖2 : v ∈ H1

0 , ‖v‖ = 1, (v, ϕj) = 0, j = 1, . . . , N
}

= λN+1,

and hence
‖rN‖ ≤ λ

−1/2
N+1 ‖∇rN‖.

It now suffices to show that the sequence ‖∇rN‖ is bounded. We first recall from
Theorem 6.1 that a(ϕi, ϕj) = 0 for i 6= j, so that a(rN , vN ) = 0. Hence a(v, v) =
a(vN , vN ) + 2a(vN , rN ) + a(rN , rN ) = a(vN , vN ) + a(rN , rN ) and

‖∇rN‖2 = a(rN , rN ) = a(v, v)− a(vN , vN ) ≤ a(v, v) = ‖∇v‖2,

which completes the proof of (2).
For the proof of the second statement, we first note that, for v ∈ H1

0 ,

N∑
j=1

λj(v, ϕj)2 = a(vN , vN ) = a(v, v)− a(rN , rN ) ≤ a(v, v),

and we conclude that
∑∞

j=1 λj(v, ϕj)2 < ∞. Conversely, we assume that v ∈ L2

and
∑∞

j=1 λj(v, ϕj)2 < ∞. We already know that vN → v in L2 as N → ∞. To
obtain convergence in H1 we note that, with M > N ,

α‖vN − vM‖21 ≤ ‖∇(vN − vM )‖2 =
M∑

j=N+1

λj(v, ϕj)2 → 0 as N →∞.

Hence, vN is a Cauchy sequence in H1 and converges to a limit in H1. Clearly, this
limit is the same as v. By the trace theorem (Theorem A.4) vN is also a Cauchy
sequence in L2(Γ), and since vN = 0 on Γ we conclude that v = 0 on Γ. Hence, v ∈
H1

0 . Finally, (1) is obtained by letting N →∞ in a(vN , vN ) =
∑N

j=1 λj(v, ϕj)2.

1



Here is an improved version of Theorem 13.1.

Theorem 2. Let uh and u be the solutions of (13.2) and (13.1). Then we have,
for t ≥ 0,

‖uh,t(t)− ut(t)‖ ≤ C
(
|vh −Rhv|1 + ‖wh −Rhw‖

)
+ Ch2

(
‖ut(t)‖2 +

∫ t

0

‖utt‖2 ds
)
,

‖uh(t)− u(t)‖ ≤ C
(
|vh −Rhv|1 + ‖wh −Rhw‖

)
+ Ch2

(
‖u(t)‖2 +

∫ t

0

‖utt‖2 ds
)
,

|uh(t)− u(t)|1 ≤ C
(
|vh −Rhv|1 + ‖wh −Rhw‖

)
+ Ch

(
‖u(t)‖2 +

∫ t

0

‖utt‖1 ds
)
.

Proof. Writing as usual

uh − u = (uh −Rhu) + (Rhu− u) = θ + ρ,

we may bound ρ and ρt as in the proof of Theorem 10.1 by

‖ρ(t)‖+ h|ρ(t)|1 ≤ Ch2‖u(t)‖2, ‖ρt(t)‖ ≤ Ch2‖ut(t)‖2. (3)

For θ(t) we have, after a calculation analogous to that in (10.14),

(θtt, χ) + a(θ, χ) = −(ρtt, χ), ∀χ ∈ Sh, for t > 0. (4)

Imitating the proof of Lemma 13.1, we choose χ = θt:

1
2

d

dt

(
‖θt‖2 + |θ|21

)
≤ ‖ρtt‖ ‖θt‖.

After integration in t we obtain

‖θt(t)‖2 + |θ(t)|21 ≤ ‖θt(0)‖2 + |θ(0)|21 + 2
∫ t

0

‖ρtt‖ ‖θt‖ ds

≤ ‖θt(0)‖2 + |θ(0)|21 + 2
∫ t

0

‖ρtt‖ ds max
s∈[0,t]

‖θt‖

≤ ‖θt(0)‖2 + |θ(0)|21 + 2
( ∫ T

0

‖ρtt‖ ds
)2

+ 1
2

(
max

s∈[0,T ]
‖θt‖

)2

,

for t ∈ [0, T ]. This implies

1
2

(
max

s∈[0,T ]
‖θt‖

)2

≤ ‖θt(0)‖2 + |θ(0)|21 + 2
( ∫ T

0

‖ρtt‖ ds
)2

and hence

‖θt(t)‖2 + |θ(t)|21 ≤ 2‖θt(0)‖2 + 2|θ(0)|21 + 4
( ∫ T

0

‖ρtt‖ ds
)2

,

for t ∈ [0, T ]. In particular this holds with t = T where T is arbitrary. Using also
bounds for ρtt similar to (3), we obtain

‖θt(t)‖ + ‖θ(t)‖ ≤ C
(
‖θt(t)‖ + |θ(t)|1

)
≤ C

(
‖wh −Rhw‖ + |vh −Rhv|1

)
+ Ch2

∫ t

0

‖utt‖2 ds,
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and

|θ(t)|1 ≤ C
(
‖wh −Rhw‖ + |vh −Rhv|1

)
+ Ch

∫ t

0

‖utt‖1 ds.

Together with the bounds in (3) this completes the proof.

We remark that the choices vh = Rhv and wh = Rhw in Theorem 2 give optimal
order error estimates for all the three quantities considered, but that other optimal
choices of vh could cause a loss of one power of h, because of the gradient in the first
term on the right. This can be avoided by a more refined argument. The regularity
requirement on the exact solution can also be reduced.
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