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You may get up to 10 points for each problem plus points for the hand-in problems.
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1. The Klein-Gordon equation utt −∆u+ u = 0 is studied in quantum field theory. Consider the
initial-boundary value problem:

utt −∆u+ u = 0, in Ω×R+,

u = 0, on Γ×R+,

u(·, 0) = v, ut(·, 0) = w, in Ω.

(a) Give a weak formulation of this problem.
(b) Define a suitable energy for this problem and show that the energy is conserved.

2. Consider the heat equation with Neumann’s boundary condition,
ut −∆u = 0 in Ω×R+,

∂u/∂n = 0 on Γ×R+,

u(·, 0) = v in Ω.

(a) Give a weak formulation of this problem.
(b) Show that u(t) = v for t ≥ 0, where f = 1

|Ω|
∫

Ω
f(x) dx denotes the average of a function f .

(c) Show that there is a constant α > 0 such that

‖u(t)− v‖ ≤ e−αt‖v − v‖.
Hint: consider w = u− u and recall the inequality (from Problem 3.5 in the book)

‖v‖2 ≤ C
{
‖∇v‖2 +

(∫
Ω

v dx
)2}

∀v ∈ H1.

3. Write the initial value problem for the wave equation
utt − uxx = 0 in R×R+,

u(·, 0) = u0, ut(·, 0) = u1 in R,

as a strictly hyperbolic system and solve it by the method of characteristics.

4. (a) Formulate the finite element method for the elliptic problem:

−∇ ·
(
a∇u

)
= f in Ω,

u = 0 on Γ.

(b) Formulate sufficient assumptions and prove the error estimate

|uh − u|1 ≤ Ch‖u‖2.

5. For the problem in Question 4, state and prove an ”a posteriori” error estimate of the form

‖uh − u‖ ≤ C
( ∑
K∈Th

R2
K

)1/2
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1. (a) Find u(t) ∈ H1
0 such that u(0) = v, ut(0) = w and

(utt, φ) + (∇u,∇φ) + (u, φ) = 0, ∀φ ∈ H1
0 , t > 0.

(b) Choose φ = ut(t):

(utt, ut) + (∇u,∇ut) + (u, ut) = 0,
1
2

d
dt
(
‖ut‖2 + ‖∇u‖2 + ‖u‖2

)
= 0,

1
2
(
‖ut(t)‖2 + ‖∇u(t)‖2 + ‖u(t)‖2

)
=

1
2
(
‖w‖2 + ‖∇v‖2 + ‖v‖2

)
.

This means that the energy E(t) = 1
2

(
‖ut(t)‖2 + ‖∇u(t)‖2 + ‖u(t)‖2

)
is conserved.

2. (a) Find u(t) ∈ H1 such that u(0) = v and

(ut, φ) + (∇u,∇φ) = 0, ∀φ ∈ H1, t > 0.

(b) Take φ = 1 ∈ H1:

(ut, 1) + (∇u,∇1) = 0
d
dt

(u, 1) = 0

(u(t), 1) = (v, 1)

which is the desired result because (u(t), 1) =
∫

Ω
u(t) dx = |Ω|u(t).

(c) The function w = u− u = u− v satisfies wt −∆w = 0, w(0) = v − v. Therefore

(wt, φ) + (∇w,∇φ) = 0, ∀φ ∈ H1, t > 0.

Take φ = w(t) and note that from Problem 3.5 in the book ‖w(t)‖2 ≤ C(‖∇w(t)‖2 + w(t)
2
) =

C‖∇w(t)‖2, because w(t) = 0. Then, with α = C,

(wt, w) + ‖∇w‖2 = 0
1
2

d
dt
‖w‖2 + α‖w‖2 ≤ 0

d
dt

(
e2αt‖w(t)‖2

)
≤ 0

‖w(t)‖2 ≤ e−2αt‖w(0)‖2

‖u(t)− v‖ ≤ e−αt‖v − v‖

3. See Example 11.9.

4. See Chapter 5.

5. See Chapter 5.
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